These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24782064)

  • 1. Gravure printing of graphene for large-area flexible electronics.
    Secor EB; Lim S; Zhang H; Frisbie CD; Francis LF; Hersam MC
    Adv Mater; 2014 Jul; 26(26):4533-8. PubMed ID: 24782064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics.
    Secor EB; Ahn BY; Gao TZ; Lewis JA; Hersam MC
    Adv Mater; 2015 Nov; 27(42):6683-8. PubMed ID: 26422363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics.
    Huang Q; Zhu Y
    Sci Rep; 2018 Oct; 8(1):15167. PubMed ID: 30310117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Transfer Printing of Graphene Lines for Fully Printed, Flexible Electronics.
    Song D; Mahajan A; Secor EB; Hersam MC; Francis LF; Frisbie CD
    ACS Nano; 2017 Jul; 11(7):7431-7439. PubMed ID: 28686415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.
    Hyun WJ; Secor EB; Hersam MC; Frisbie CD; Francis LF
    Adv Mater; 2015 Jan; 27(1):109-15. PubMed ID: 25377870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printable Transparent Conductive Films for Flexible Electronics.
    Li D; Lai WY; Zhang YZ; Huang W
    Adv Mater; 2018 Mar; 30(10):. PubMed ID: 29319214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Volume Transfer of Graphene-Based Inks with the Gravure Printing Process: Influence of Rheology and Printing Parameters.
    Fakhari A; Fernandes C; Galindo-Rosales FJ
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability Contrast Gravure Printing.
    Zhang H; Ramm A; Lim S; Xie W; Ahn BY; Xu W; Mahajan A; Suszynski WJ; Kim C; Lewis JA; Frisbie CD; Francis LF
    Adv Mater; 2015 Dec; 27(45):7420-5. PubMed ID: 26480017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.
    Secor EB; Hersam MC
    J Phys Chem Lett; 2015 Feb; 6(4):620-6. PubMed ID: 26262476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics.
    Kralj M; Krivačić S; Ivanišević I; Zubak M; Supina A; Marciuš M; Halasz I; Kassal P
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns.
    Niaraki Asli AE; Guo J; Lai PL; Montazami R; Hashemi NN
    Biosensors (Basel); 2020 Jan; 10(1):. PubMed ID: 31963492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive nanomaterials for 2D and 3D printed flexible electronics.
    Kamyshny A; Magdassi S
    Chem Soc Rev; 2019 Mar; 48(6):1712-1740. PubMed ID: 30569917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet printing of graphene.
    Arapov K; Abbel R; de With G; Friedrich H
    Faraday Discuss; 2014; 173():323-36. PubMed ID: 25466243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper inks for printed electronics: a review.
    Zeng X; He P; Hu M; Zhao W; Chen H; Liu L; Sun J; Yang J
    Nanoscale; 2022 Nov; 14(43):16003-16032. PubMed ID: 36301077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.