BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24782078)

  • 1. Response of the green alga Oophila sp., a salamander endosymbiont, to a PSII-inhibitor under laboratory conditions.
    Baxter L; Brain R; Rodriguez-Gil JL; Hosmer A; Solomon K; Hanson M
    Environ Toxicol Chem; 2014 Aug; 33(8):1858-64. PubMed ID: 24782078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis).
    Baxter L; Brain RA; Hosmer AJ; Nema M; Müller KM; Solomon KR; Hanson ML
    Environ Pollut; 2015 Nov; 206():324-31. PubMed ID: 26219074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of culturing conditions for toxicity testing with the alga Oophila sp. (Chlorophyceae), an amphibian endosymbiont.
    Rodríguez-Gil JL; Brain R; Baxter L; Ruffell S; McConkey B; Solomon K; Hanson M
    Environ Toxicol Chem; 2014 Nov; 33(11):2566-75. PubMed ID: 25113146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of atrazine on spotted salamander embryos and their symbiotic alga.
    Olivier HM; Moon BR
    Ecotoxicology; 2010 Apr; 19(4):654-61. PubMed ID: 19924530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides.
    Baxter L; Brain RA; Lissemore L; Solomon KR; Hanson ML; Prosser RS
    Ecotoxicol Environ Saf; 2016 Oct; 132():250-9. PubMed ID: 27340884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum.
    Graham ER; Fay SA; Davey A; Sanders RW
    J Exp Biol; 2013 Feb; 216(Pt 3):452-9. PubMed ID: 23038736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of a green alga to atrazine is not enhanced by previous acute exposure.
    Baxter L; Brain R; Prosser R; Solomon K; Hanson M
    Environ Pollut; 2013 Oct; 181():325-8. PubMed ID: 23850402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid water interferes with salamander-green algae symbiosis during early embryonic development.
    Bianchini K; Tattersall GJ; Sashaw J; Porteus CS; Wright PA
    Physiol Biochem Zool; 2012; 85(5):470-80. PubMed ID: 22902375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of photosynthetic herbicides: algal growth inhibition test vs. electrochemical photosystem II biosensor.
    Masojídek J; Souček P; Máchová J; Frolík J; Klem K; Malý J
    Ecotoxicol Environ Saf; 2011 Jan; 74(1):117-22. PubMed ID: 20828821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the effects of pulse exposure of several PSII inhibitors on two algae.
    Copin PJ; Chèvre N
    Chemosphere; 2015 Oct; 137():70-7. PubMed ID: 26011414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine.
    Brain RA; Arnie JR; Porch JR; Hosmer AJ
    Environ Toxicol Chem; 2012 Nov; 31(11):2572-81. PubMed ID: 22903862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions.
    Prosser RS; Brain RA; Hosmer AJ; Solomon KR; Hanson ML
    Ecotoxicology; 2013 Nov; 22(9):1367-83. PubMed ID: 24043588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological benefits and latent effects of an algal-salamander symbiosis.
    Small DP; Bishop CD
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Aug; 246():110715. PubMed ID: 32320756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis.
    Burns JA; Zhang H; Hill E; Kim E; Kerney R
    Elife; 2017 May; 6():. PubMed ID: 28462779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-tolerance of phytoplankton communities to photosynthesis II inhibitors.
    Knauer K; Leimgruber A; Hommen U; Knauert S
    Aquat Toxicol; 2010 Mar; 96(4):256-63. PubMed ID: 20004984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Combined Algae Test for the Evaluation of Mixture Toxicity in Environmental Samples.
    Glauch L; Escher BI
    Environ Toxicol Chem; 2020 Dec; 39(12):2496-2508. PubMed ID: 32926747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing temporal and spatial variation in sensitivity of communities of periphyton sampled from agroecosystem to, and ability to recover from, atrazine exposure.
    Prosser RS; Brain RA; Malia Andrus J; Hosmer AJ; Solomon KR; Hanson ML
    Ecotoxicol Environ Saf; 2015 Aug; 118():204-216. PubMed ID: 25957082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pulse herbicidal exposure on scenedesmus vacuolatus: a comparison of two photosystem II inhibitors.
    Vallotton N; Lambertus Eggen RI; Escher BI; Krayenbühl J; Chèvre N
    Environ Toxicol Chem; 2008 Jun; 27(6):1399-407. PubMed ID: 18220443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotrophic Carbon Fixation in a Salamander-Alga Symbiosis.
    Burns JA; Kerney R; Duhamel S
    Front Microbiol; 2020; 11():1815. PubMed ID: 32849422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance of Oscillatoria limnetica Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature.
    Bérard A; Leboulanger C; Pelte T
    Arch Environ Contam Toxicol; 1999 Nov; 37(4):472-9. PubMed ID: 10508894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.