BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

438 related articles for article (PubMed ID: 24782283)

  • 1. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice.
    Lewis CN; Brown KA; Edwards LA; Cooper G; Findlay HS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):E4960-7. PubMed ID: 24297880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency.
    Cripps G; Flynn KJ; Lindeque PK
    PLoS One; 2016; 11(4):e0151739. PubMed ID: 27082737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod.
    Thor P; Dupont S
    Glob Chang Biol; 2015 Jun; 21(6):2261-71. PubMed ID: 25430823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator.
    Hammill E; Johnson E; Atwood TB; Harianto J; Hinchliffe C; Calosi P; Byrne M
    Glob Chang Biol; 2018 Jan; 24(1):e128-e138. PubMed ID: 28850765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae).
    Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D
    J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of elevated CO2 on the reproduction of two calanoid copepods.
    McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI
    Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment.
    Algueró-Muñiz M; Alvarez-Fernandez S; Thor P; Bach LT; Esposito M; Horn HG; Ecker U; Langer JAF; Taucher J; Malzahn AM; Riebesell U; Boersma M
    PLoS One; 2017; 12(4):e0175851. PubMed ID: 28410436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions.
    Doropoulos C; Ward S; Diaz-Pulido G; Hoegh-Guldberg O; Mumby PJ
    Ecol Lett; 2012 Apr; 15(4):338-46. PubMed ID: 22321314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica.
    Kita J; Kikkawa T; Asai T; Ishimatsu A
    Mar Pollut Bull; 2013 Aug; 73(2):402-8. PubMed ID: 23820193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification.
    Li Y; Wang WX; Wang M
    Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification.
    Pansch C; Schaub I; Havenhand J; Wahl M
    Glob Chang Biol; 2014 Mar; 20(3):765-77. PubMed ID: 24273082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insensitivities of a subtropical productive coastal plankton community and trophic transfer to ocean acidification: Results from a microcosm study.
    Wang T; Jin P; Wells ML; Trick CG; Gao K
    Mar Pollut Bull; 2019 Apr; 141():462-471. PubMed ID: 30955757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term effects of elevated CO₂ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus.
    Hildebrandt N; Niehoff B; Sartoris FJ
    Mar Pollut Bull; 2014 Mar; 80(1-2):59-70. PubMed ID: 24529340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates.
    Pedersen SA; Håkedal OJ; Salaberria I; Tagliati A; Gustavson LM; Jenssen BM; Olsen AJ; Altin D
    Environ Sci Technol; 2014 Oct; 48(20):12275-84. PubMed ID: 25225957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean acidification increases copper toxicity to the early life history stages of the polychaete Arenicola marina in artificial seawater.
    Campbell AL; Mangan S; Ellis RP; Lewis C
    Environ Sci Technol; 2014 Aug; 48(16):9745-53. PubMed ID: 25033036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combined effects of elevated pCO
    Li F; Shi J; Cheung SG; Shin PKS; Liu X; Sun Y; Mu F
    Mar Pollut Bull; 2018 Jan; 126():623-628. PubMed ID: 28365018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.