These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24782420)

  • 41. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study.
    Yang Q; Zhong C
    J Phys Chem B; 2006 Jan; 110(2):655-8. PubMed ID: 16471581
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CO2 dynamics in a metal-organic framework with open metal sites.
    Kong X; Scott E; Ding W; Mason JA; Long JR; Reimer JA
    J Am Chem Soc; 2012 Sep; 134(35):14341-4. PubMed ID: 22908934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microporous metal-organic frameworks for gas separation.
    Li B; Wang H; Chen B
    Chem Asian J; 2014 Jun; 9(6):1474-98. PubMed ID: 24668618
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reversible ligand exchange in a metal-organic framework (MOF): toward MOF-based dynamic combinatorial chemical systems.
    Gross AF; Sherman E; Mahoney SL; Vajo JJ
    J Phys Chem A; 2013 May; 117(18):3771-6. PubMed ID: 23586479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metal-Organic Frameworks as a Versatile Tool To Study and Model Energy Transfer Processes.
    Williams DE; Shustova NB
    Chemistry; 2015 Oct; 21(44):15474-9. PubMed ID: 26310196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular tectonics of metal-organic frameworks (MOFs): a rational design strategy for unusual mixed-connected network topologies.
    Du M; Zhang ZH; Tang LF; Wang XG; Zhao XJ; Batten SR
    Chemistry; 2007; 13(9):2578-86. PubMed ID: 17186559
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.
    Yin Z; Zhou YL; Zeng MH; Kurmoo M
    Dalton Trans; 2015 Mar; 44(12):5258-75. PubMed ID: 25687325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A route to robust thioether-functionalized MOF solid materials displaying heavy metal uptake and the ability to be further oxidized.
    Xiao GW; Chen TF; Sun XZ; Guo H; Li ZF; Deng YH; Wan CQ
    Dalton Trans; 2017 Sep; 46(36):12036-12040. PubMed ID: 28853748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks.
    Yang Q; Zhong C
    J Phys Chem B; 2005 Jun; 109(24):11862-4. PubMed ID: 16852458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks.
    Fei H; Cahill JF; Prather KA; Cohen SM
    Inorg Chem; 2013 Apr; 52(7):4011-6. PubMed ID: 23516974
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies.
    Tian YQ; Zhao YM; Chen ZX; Zhang GN; Weng LH; Zhao DY
    Chemistry; 2007; 13(15):4146-54. PubMed ID: 17397024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach.
    Tafipolsky M; Schmid R
    J Phys Chem B; 2009 Feb; 113(5):1341-52. PubMed ID: 19133795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Well-defined metal-organic framework hollow nanocages.
    Zhang Z; Chen Y; Xu X; Zhang J; Xiang G; He W; Wang X
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):429-33. PubMed ID: 24285348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoporous carbohydrate metal-organic frameworks.
    Forgan RS; Smaldone RA; Gassensmith JJ; Furukawa H; Cordes DB; Li Q; Wilmer CE; Botros YY; Snurr RQ; Slawin AM; Stoddart JF
    J Am Chem Soc; 2012 Jan; 134(1):406-17. PubMed ID: 22092094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lanthanide based tuning of luminescence in MOFs and dense frameworks--from mono- and multimetal systems to sensors and films.
    Meyer LV; Schönfeld F; Müller-Buschbaum K
    Chem Commun (Camb); 2014 Aug; 50(60):8093-108. PubMed ID: 24816926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface chemistry of metal-organic frameworks at the liquid-solid interface.
    Zacher D; Schmid R; Wöll C; Fischer RA
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):176-99. PubMed ID: 21190182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A supermolecular building approach for the design and construction of metal-organic frameworks.
    Guillerm V; Kim D; Eubank JF; Luebke R; Liu X; Adil K; Lah MS; Eddaoudi M
    Chem Soc Rev; 2014 Aug; 43(16):6141-72. PubMed ID: 25009001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of porous Ni-based metal-organic frameworks containing paddle-wheel type inorganic building units via high-throughput methods.
    Maniam P; Stock N
    Inorg Chem; 2011 Jun; 50(11):5085-97. PubMed ID: 21539354
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules.
    Dong MJ; Zhao M; Ou S; Zou C; Wu CD
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1575-9. PubMed ID: 24382789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solvent-modified dynamic porosity in chiral 3D kagome frameworks.
    Keene TD; Rankine D; Evans JD; Southon PD; Kepert CJ; Aitken JB; Sumby CJ; Doonan CJ
    Dalton Trans; 2013 Jun; 42(22):7871-9. PubMed ID: 23423162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.