These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24782503)

  • 21. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection.
    Blanco FA; Judelson HS
    Mol Microbiol; 2005 May; 56(3):638-48. PubMed ID: 15819621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple in-vitro 'wet-plate' method for mass production of Phytophthora nicotianae zoospores and factors influencing zoospore production.
    Ahonsi MO; Banko TJ; Hong C
    J Microbiol Methods; 2007 Sep; 70(3):557-60. PubMed ID: 17683817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zoospore density-dependent behaviors of Phytophthora nicotianae are autoregulated by extracellular products.
    Kong P; Hong C
    Phytopathology; 2010 Jul; 100(7):632-7. PubMed ID: 20528180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response of Chile Pepper to Phytophthora capsici in Relation to Soil Salinity.
    Sanogo S
    Plant Dis; 2004 Feb; 88(2):205-209. PubMed ID: 30812429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zoospore encystment and pathogenicity of Phytophthora and Pythium species on plant roots.
    Raftoyannis Y; Dick MW
    Microbiol Res; 2006; 161(1):1-8. PubMed ID: 16338584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.
    Zhang M; Lu J; Tao K; Ye W; Li A; Liu X; Kong L; Dong S; Zheng X; Wang Y
    PLoS One; 2012; 7(6):e40246. PubMed ID: 22768262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium Interference with Zoospore Biology and Infectivity of Phytophthora parasitica in Nutrient Irrigation Solutions.
    von Broembsen SL; Deacon JW
    Phytopathology; 1997 May; 87(5):522-8. PubMed ID: 18945107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection.
    Zhu C; Yang X; Lv R; Li Z; Ding X; Tyler BM; Zhang X
    Mol Plant Pathol; 2016 Apr; 17(3):369-87. PubMed ID: 26095317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phage-displayed peptides as developmental agonists for Phytophthora capsici zoospores.
    Bishop-Hurley SL; Mounter SA; Laskey J; Morris RO; Elder J; Roop P; Rouse C; Schmidt FJ; English JT
    Appl Environ Microbiol; 2002 Jul; 68(7):3315-20. PubMed ID: 12089009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A straightforward protocol for electro-transformation of Phytophthora capsici zoospores.
    Huitema E; Smoker M; Kamoun S
    Methods Mol Biol; 2011; 712():129-35. PubMed ID: 21359805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae.
    Wang Y; Li A; Wang X; Zhang X; Zhao W; Dou D; Zheng X; Wang Y
    Eukaryot Cell; 2010 Feb; 9(2):242-50. PubMed ID: 20008081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in ORP1 Conferring Oxathiapiprolin Resistance Confirmed by Genome Editing using CRISPR/Cas9 in Phytophthora capsici and P. sojae.
    Miao J; Chi Y; Lin D; Tyler BM; Liu X
    Phytopathology; 2018 Dec; 108(12):1412-1419. PubMed ID: 29979095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potassium homeostasis influences the locomotion and encystment of zoospores of plant pathogenic oomycetes.
    Appiah AA; van West P; Osborne MC; Gow NA
    Fungal Genet Biol; 2005 Mar; 42(3):213-23. PubMed ID: 15707842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological characteristics and mating type distribution of Phytophthora capsici from China.
    Du Y; Gong ZH; Liu GZ; Chai GX; Li C
    Genet Mol Res; 2014 Jan; 13(1):396-405. PubMed ID: 24535866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competition between pyrimorph-sensitive and pyrimorph-resistant isolates of Phytophthora capsici.
    Pang Z; Shao J; Hu J; Chen L; Wang Z; Qin Z; Liu X
    Phytopathology; 2014 Mar; 104(3):269-74. PubMed ID: 24093920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues.
    Díez-Navajas AM; Greif C; Poutaraud A; Merdinoglu D
    Micron; 2007; 38(6):680-3. PubMed ID: 17107808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersal and movement mechanisms of Phytophthora capsici sporangia.
    Granke LL; Windstam ST; Hoch HC; Smart CD; Hausbeck MK
    Phytopathology; 2009 Nov; 99(11):1258-64. PubMed ID: 19821729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soybean isoflavones trigger a calcium influx in Phytophthora sojae.
    Connolly MS; Williams N; Heckman CA; Morris PF
    Fungal Genet Biol; 1999 Oct; 28(1):6-11. PubMed ID: 10512667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267.
    Kruijt M; Tran H; Raaijmakers JM
    J Appl Microbiol; 2009 Aug; 107(2):546-56. PubMed ID: 19302489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iTRAQ proteomic analysis of the inhibitory effect of 1,6-O,O-diacetylbritannilactone on the plant pathogenic oomycete Phytophthora capsici.
    He L; Wang M; Wang H; Zhao T; Cui K; Zhou L
    Pestic Biochem Physiol; 2022 Jun; 184():105125. PubMed ID: 35715063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.