These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24782675)

  • 1. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.
    Mardanov MJ; Mahmudov NI; Sharifov YA
    ScientificWorldJournal; 2014; 2014():918730. PubMed ID: 24782675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Existence results of fractional differential equations with nonlocal double-integral boundary conditions.
    Yan D
    Math Biosci Eng; 2023 Jan; 20(3):4437-4454. PubMed ID: 36896507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions.
    Rezapour S; Thabet STM; Rafeeq AS; Kedim I; Vivas-Cortez M; Aghazadeh N
    PLoS One; 2024; 19(7):e0300590. PubMed ID: 38950034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Existence and uniqueness of neutral functional differential equations with sequential fractional operators.
    Debbar R; Boulares H; Moumen A; Alraqad T; Saber H
    PLoS One; 2024; 19(7):e0304575. PubMed ID: 39012860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Existence and uniqueness of well-posed fractional boundary value problem.
    Wang Y; Jurrat B; Ejaz M; Azeem M; Elashiry MI
    PLoS One; 2024; 19(5):e0303848. PubMed ID: 38805425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Existence of solutions of a two-dimensional boundary value problem for a system of nonlinear equations arising in growing cell populations.
    Jeribi A; Krichen B; Mefteh B
    J Biol Dyn; 2013; 7():218-32. PubMed ID: 24303903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Existence of solutions and positive solutions to a fourth-order two-point BVP with second derivative.
    Yao QL
    J Zhejiang Univ Sci; 2004 Mar; 5(3):353-7. PubMed ID: 14727313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative.
    Harisa SA; Faried N; Vijayaraj V; Ravichandran C; Morsy A
    PLoS One; 2024; 19(5):e0301338. PubMed ID: 38820319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.
    Shah K; Khan RA
    Springerplus; 2016; 5(1):1116. PubMed ID: 27478733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple positive solutions for nonlinear fractional boundary value problems.
    Zhao D; Liu Y
    ScientificWorldJournal; 2013; 2013():473828. PubMed ID: 24348162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the almost periodic solution of cellular neural networks with distributed delays.
    Liu Y; You Z; Cao L
    IEEE Trans Neural Netw; 2007 Jan; 18(1):295-300. PubMed ID: 17278480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical solutions of the nonlinear fractional-order brusselator system by Bernstein polynomials.
    Khan H; Jafari H; Khan RA; Tajadodi H; Johnston SJ
    ScientificWorldJournal; 2014; 2014():257484. PubMed ID: 25485293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative.
    Asma ; Shabbir S; Shah K; Abdeljawad T
    Adv Differ Equ; 2021; 2021(1):395. PubMed ID: 34456987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On random fixed point theorems with applications to integral equations.
    Eke KS; Akewe H; Bishop SA
    Heliyon; 2019 May; 5(5):e01641. PubMed ID: 31193544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence results for a system of coupled hybrid fractional differential equations.
    Ahmad B; Ntouyas SK; Alsaedi A
    ScientificWorldJournal; 2014; 2014():426438. PubMed ID: 25215320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of impulsive problems under Mittag-Leffler power law.
    Abdo MS; Abdeljawad T; Shah K; Jarad F
    Heliyon; 2020 Oct; 6(10):e05109. PubMed ID: 33072909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory.
    Sintunavarat W; Turab A
    PLoS One; 2022; 17(8):e0270148. PubMed ID: 35960746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of impulsive multiterm fractional differential equations with single and multiple base points and applications.
    Liu Y; Ahmad B
    ScientificWorldJournal; 2014; 2014():194346. PubMed ID: 24578623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations.
    Banks HT; Robbins D; Sutton KL
    Math Biosci Eng; 2013; 10(5-6):1301-33. PubMed ID: 24245618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse.
    Li G; Zhang Y; Guan Y; Li W
    Math Biosci Eng; 2023 Feb; 20(4):7020-7041. PubMed ID: 37161139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.