These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24782734)

  • 1. Neural decoding of expressive human movement from scalp electroencephalography (EEG).
    Cruz-Garza JG; Hernandez ZR; Nepaul S; Bradley KK; Contreras-Vidal JL
    Front Hum Neurosci; 2014; 8():188. PubMed ID: 24782734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding of intentional actions from scalp electroencephalography (EEG) in freely-behaving infants.
    Hernandez ZR; Cruz-Garza J; Tse T; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2115-8. PubMed ID: 25570402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution.
    Bulea TC; Prasad S; Kilicarslan A; Contreras-Vidal JL
    Front Neurosci; 2014; 8():376. PubMed ID: 25505377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Expressive Bodily Movement Repertoire for Marimba Performance, Revealed through Observers' Laban Effort-Shape Analyses, and Allied Musical Features: Two Case Studies.
    Broughton MC; Davidson JW
    Front Psychol; 2016; 7():1211. PubMed ID: 27630585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper limb complex movements decoding from pre-movement EEG signals using wavelet common spatial patterns.
    Mohseni M; Shalchyan V; Jochumsen M; Niazi IK
    Comput Methods Programs Biomed; 2020 Jan; 183():105076. PubMed ID: 31546195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography.
    Paek AY; Agashe HA; Contreras-Vidal JL
    Front Neuroeng; 2014; 7():3. PubMed ID: 24659964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurosci; 2018; 12():130. PubMed ID: 29615848
    [No Abstract]   [Full Text] [Related]  

  • 9. Classification of stand-to-sit and sit-to-stand movement from low frequency EEG with locality preserving dimensionality reduction.
    Bulea TC; Prasad S; Kilicarslan A; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6341-4. PubMed ID: 24111191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of finger vibrotactile input using scalp EEG.
    He Y; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4717-20. PubMed ID: 26737347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Single-Hand and Both-Hand Movement Directions From Noninvasive Neural Signals.
    Wang J; Bi L; Fei W; Guan C
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):1932-1940. PubMed ID: 33108279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding individual finger movements from one hand using human EEG signals.
    Liao K; Xiao R; Gonzalez J; Ding L
    PLoS One; 2014; 9(1):e85192. PubMed ID: 24416360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Somatic Movement Approach to Fostering Emotional Resiliency through Laban Movement Analysis.
    Tsachor RP; Shafir T
    Front Hum Neurosci; 2017; 11():410. PubMed ID: 28936167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions.
    Gwin JT; Ferris DP
    J Neuroeng Rehabil; 2012 Jun; 9():35. PubMed ID: 22682644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
    Bai O; Lin P; Vorbach S; Li J; Furlani S; Hallett M
    Clin Neurophysiol; 2007 Dec; 118(12):2637-55. PubMed ID: 17967559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Advantage of Low-Delta Electroencephalogram Phase Feature for Reconstructing the Center-Out Reaching Hand Movements.
    Zeng H; Sun Y; Xu G; Wu C; Song A; Xu B; Li H; Hu C
    Front Neurosci; 2019; 13():480. PubMed ID: 31156367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of different reaching movements from the same limb using EEG.
    Shiman F; López-Larraz E; Sarasola-Sanz A; Irastorza-Landa N; Spüler M; Birbaumer N; Ramos-Murguialday A
    J Neural Eng; 2017 Aug; 14(4):046018. PubMed ID: 28467325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global cortical activity predicts shape of hand during grasping.
    Agashe HA; Paek AY; Zhang Y; Contreras-Vidal JL
    Front Neurosci; 2015; 9():121. PubMed ID: 25914616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.