These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24782736)

  • 1. Distinct developmental growth patterns account for the disproportionate expansion of the rostral and caudal isocortex in evolution.
    Charvet CJ
    Front Hum Neurosci; 2014; 8():190. PubMed ID: 24782736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals.
    Charvet CJ; Reep RL; Finlay BL
    J Comp Neurol; 2016 Mar; 524(4):772-82. PubMed ID: 26223206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic, cross-cortex variation in neuron numbers in rodents and primates.
    Charvet CJ; Cahalane DJ; Finlay BL
    Cereb Cortex; 2015 Jan; 25(1):147-60. PubMed ID: 23960207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis.
    Charvet CJ; Finlay BL
    Brain Behav Evol; 2014; 84(2):81-92. PubMed ID: 25247448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals.
    Charvet CJ; Stimpson CD; Kim YD; Raghanti MA; Lewandowski AH; Hof PR; Gómez-Robles A; Krienen FM; Sherwood CC
    J Comp Neurol; 2017 Jun; 525(8):1811-1826. PubMed ID: 28001295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic, balancing gradients in neuron density and number across the primate isocortex.
    Cahalane DJ; Charvet CJ; Finlay BL
    Front Neuroanat; 2012; 6():28. PubMed ID: 22826696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.
    Reillo I; de Juan Romero C; García-Cabezas MÁ; Borrell V
    Cereb Cortex; 2011 Jul; 21(7):1674-94. PubMed ID: 21127018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First somatosensory cortical columns and associated neuronal clusters of nucleus ventralis posterolateralis of the cat: an anatomical demonstration.
    Kosar E; Hand PJ
    J Comp Neurol; 1981 May; 198(3):515-39. PubMed ID: 7240456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex.
    Martínez-Cerdeño V; Noctor SC; Kriegstein AR
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i152-61. PubMed ID: 16766701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurogenesis and the evolution of cortical diversity: mode, tempo, and partitioning during development and persistence in adulthood.
    Kornack DR
    Brain Behav Evol; 2000 Jun; 55(6):336-44. PubMed ID: 10971018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurogenesis in the rat primary olfactory cortex.
    Bayer SA
    Int J Dev Neurosci; 1986; 4(3):251-71. PubMed ID: 3455589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions.
    Loh KK; Hadj-Bouziane F; Petrides M; Procyk E; Amiez C
    Front Neurosci; 2017; 11():753. PubMed ID: 29375293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional patterns of cerebral cortical differentiation determined by diffusion tensor MRI.
    Kroenke CD; Taber EN; Leigland LA; Knutsen AK; Bayly PV
    Cereb Cortex; 2009 Dec; 19(12):2916-29. PubMed ID: 19363145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors.
    Sahara S; O'Leary DD
    Neuron; 2009 Jul; 63(1):48-62. PubMed ID: 19607792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex.
    Polleux F; Dehay C; Kennedy H
    J Comp Neurol; 1997 Aug; 385(1):95-116. PubMed ID: 9268119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rostro-caudal gradual loss of cellular diversity within the periventricular regions of the ventricular system.
    Hermann A; Suess C; Fauser M; Kanzler S; Witt M; Fabel K; Schwarz J; Höglinger GU; Storch A
    Stem Cells; 2009 Apr; 27(4):928-41. PubMed ID: 19353521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The entorhinal cortex of the monkey: II. Cortical afferents.
    Insausti R; Amaral DG; Cowan WM
    J Comp Neurol; 1987 Oct; 264(3):356-95. PubMed ID: 2445796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurogenesis of the cat's primary visual cortex.
    Luskin MB; Shatz CJ
    J Comp Neurol; 1985 Dec; 242(4):611-31. PubMed ID: 4086673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of cortical neurogenesis.
    Abdel-Mannan O; Cheung AF; Molnár Z
    Brain Res Bull; 2008 Mar; 75(2-4):398-404. PubMed ID: 18331905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurogenic development of the visual areas in the Chinese softshell turtle (Pelodiscus sinensis) and evolutionary implications.
    Xi C; Zeng S; Zhang X; Zuo M
    J Anat; 2008 May; 212(5):578-89. PubMed ID: 18430086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.