BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24783553)

  • 21. Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique.
    Bi S; Pang B; Wang T; Zhao T; Yu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():456-61. PubMed ID: 24211804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles.
    Li J; Wang X
    Food Chem; 2015 Feb; 168():566-71. PubMed ID: 25172749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on the interactions of genisten esterified derivatives with bovine serum albumin].
    Liu R; Cao SW; Yu YY; Li XH; Deng ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3369-74. PubMed ID: 20210172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of in vitro interaction between tetrabromobisphenol A and bovine serum albumin by fluorescence spectroscopy.
    Wu Y; Qian Y; Cui H; Lai X; Xie X; Wang X
    Environ Toxicol Chem; 2011 Dec; 30(12):2697-700. PubMed ID: 21901752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on the interaction between carbonyl-fused N-confused porphyrin and bovine serum albumin by spectroscopic techniques.
    Yu X; Liao Z; Jiang B; Zheng L; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():372-7. PubMed ID: 24967543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin.
    Hao C; Xu G; Feng Y; Lu L; Sun W; Sun R
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():191-197. PubMed ID: 28499172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies.
    Bhogale A; Patel N; Mariam J; Dongre PM; Miotello A; Kothari DC
    Colloids Surf B Biointerfaces; 2014 Jan; 113():276-84. PubMed ID: 24121071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on the interaction between 21-(Ph-NN)-NCTPP and bovine serum albumin by spectroscopic techniques.
    Yu X; Jiang B; Liao Z; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():260-5. PubMed ID: 25706594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopic analyses on interaction of bovine serum albumin with novel spiro[cyclopropane-pyrrolizin].
    Yu X; Liao Z; Jiang B; Hu X; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():129-36. PubMed ID: 25218221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification differential behavior of Gd@C
    Liu X; Ying X; Li Y; Yang H; Hao W; Yu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():383-396. PubMed ID: 29894950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin.
    Wu S; Wang X; Bao Y; Zhang C; Liu H; Li Z; Chen M; Wang C; Guo Q; Peng X
    Food Chem; 2020 Jun; 315():126228. PubMed ID: 31991257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Fluorescence quench of bovine serum albumin by pentachlorophenol].
    Yu BC; Wu HT; Zhou PJ; Nan SQ; Lu GH; Song F
    Huan Jing Ke Xue; 2006 May; 27(5):977-80. PubMed ID: 16850844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin.
    Zhang G; Ma Y; Wang L; Zhang Y; Zhou J
    Food Chem; 2012 Jul; 133(2):264-70. PubMed ID: 25683394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensing of hydrophobic cavity of serum albumin by an adenosine analogue: fluorescence correlation and ensemble spectroscopic studies.
    Nag M; Bera K; Chakraborty S; Basak S
    J Photochem Photobiol B; 2013 Oct; 127():202-11. PubMed ID: 24061159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin.
    Guo Z; Kong Z; Wei Y; Li H; Wang Y; Huang A; Ma L
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():783-791. PubMed ID: 27810769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of a Diligand Complex of Bovine Serum Albumin with Quercetin and Carbon Nanotubes for the Protection of Bioactive Quercetin and Reduction of Cytotoxicity.
    Lu N; Sui Y; Zeng L; Tian R; Peng YY
    J Agric Food Chem; 2018 Aug; 66(31):8355-8362. PubMed ID: 30016096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The fluorescence spectroscopic study on the interaction between imidazo[2,1-b]thiazole analogues and bovine serum albumin.
    Yu X; Yang Y; Shiyu L; Yao Q; Heting L; Xiaofang L; Pinggui Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):322-8. PubMed ID: 21917505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inclusion complexes of quercetin with three β-cyclodextrins derivatives at physiological pH: spectroscopic study and antioxidant activity.
    Liu M; Dong L; Chen A; Zheng Y; Sun D; Wang X; Wang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():854-60. PubMed ID: 23892509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods.
    Zhang G; Wang L; Fu P; Hu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):424-31. PubMed ID: 21831703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectrometric study of the interaction between alpinetin and bovine serum albumin using chemometrics approaches.
    Ni Y; Wang S; Kokot S
    Anal Chim Acta; 2010 Mar; 663(2):139-46. PubMed ID: 20206002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.