These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 24783553)
21. Investigation on the interactions of clenbuterol to bovine serum albumin and lysozyme by molecular fluorescence technique. Bi S; Pang B; Wang T; Zhao T; Yu W Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():456-61. PubMed ID: 24211804 [TBL] [Abstract][Full Text] [Related]
22. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles. Li J; Wang X Food Chem; 2015 Feb; 168():566-71. PubMed ID: 25172749 [TBL] [Abstract][Full Text] [Related]
23. [Study on the interactions of genisten esterified derivatives with bovine serum albumin]. Liu R; Cao SW; Yu YY; Li XH; Deng ZY Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3369-74. PubMed ID: 20210172 [TBL] [Abstract][Full Text] [Related]
24. Study of in vitro interaction between tetrabromobisphenol A and bovine serum albumin by fluorescence spectroscopy. Wu Y; Qian Y; Cui H; Lai X; Xie X; Wang X Environ Toxicol Chem; 2011 Dec; 30(12):2697-700. PubMed ID: 21901752 [TBL] [Abstract][Full Text] [Related]
25. Study on the interaction between carbonyl-fused N-confused porphyrin and bovine serum albumin by spectroscopic techniques. Yu X; Liao Z; Jiang B; Zheng L; Li X Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():372-7. PubMed ID: 24967543 [TBL] [Abstract][Full Text] [Related]
26. Fluorescence quenching study on the interaction of ferroferric oxide nanoparticles with bovine serum albumin. Hao C; Xu G; Feng Y; Lu L; Sun W; Sun R Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():191-197. PubMed ID: 28499172 [TBL] [Abstract][Full Text] [Related]
27. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Bhogale A; Patel N; Mariam J; Dongre PM; Miotello A; Kothari DC Colloids Surf B Biointerfaces; 2014 Jan; 113():276-84. PubMed ID: 24121071 [TBL] [Abstract][Full Text] [Related]
28. Study on the interaction between 21-(Ph-NN)-NCTPP and bovine serum albumin by spectroscopic techniques. Yu X; Jiang B; Liao Z; Li X Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():260-5. PubMed ID: 25706594 [TBL] [Abstract][Full Text] [Related]
29. Spectroscopic analyses on interaction of bovine serum albumin with novel spiro[cyclopropane-pyrrolizin]. Yu X; Liao Z; Jiang B; Hu X; Li X Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():129-36. PubMed ID: 25218221 [TBL] [Abstract][Full Text] [Related]
30. Identification differential behavior of Gd@C Liu X; Ying X; Li Y; Yang H; Hao W; Yu M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():383-396. PubMed ID: 29894950 [TBL] [Abstract][Full Text] [Related]
31. Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Wu S; Wang X; Bao Y; Zhang C; Liu H; Li Z; Chen M; Wang C; Guo Q; Peng X Food Chem; 2020 Jun; 315():126228. PubMed ID: 31991257 [TBL] [Abstract][Full Text] [Related]
32. [Fluorescence quench of bovine serum albumin by pentachlorophenol]. Yu BC; Wu HT; Zhou PJ; Nan SQ; Lu GH; Song F Huan Jing Ke Xue; 2006 May; 27(5):977-80. PubMed ID: 16850844 [TBL] [Abstract][Full Text] [Related]
33. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin. Zhang G; Ma Y; Wang L; Zhang Y; Zhou J Food Chem; 2012 Jul; 133(2):264-70. PubMed ID: 25683394 [TBL] [Abstract][Full Text] [Related]
34. Sensing of hydrophobic cavity of serum albumin by an adenosine analogue: fluorescence correlation and ensemble spectroscopic studies. Nag M; Bera K; Chakraborty S; Basak S J Photochem Photobiol B; 2013 Oct; 127():202-11. PubMed ID: 24061159 [TBL] [Abstract][Full Text] [Related]
35. Effects of gene carrier polyethyleneimines on the structure and binding capability of bovine serum albumin. Guo Z; Kong Z; Wei Y; Li H; Wang Y; Huang A; Ma L Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():783-791. PubMed ID: 27810769 [TBL] [Abstract][Full Text] [Related]
36. Generation of a Diligand Complex of Bovine Serum Albumin with Quercetin and Carbon Nanotubes for the Protection of Bioactive Quercetin and Reduction of Cytotoxicity. Lu N; Sui Y; Zeng L; Tian R; Peng YY J Agric Food Chem; 2018 Aug; 66(31):8355-8362. PubMed ID: 30016096 [TBL] [Abstract][Full Text] [Related]
37. The fluorescence spectroscopic study on the interaction between imidazo[2,1-b]thiazole analogues and bovine serum albumin. Yu X; Yang Y; Shiyu L; Yao Q; Heting L; Xiaofang L; Pinggui Y Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):322-8. PubMed ID: 21917505 [TBL] [Abstract][Full Text] [Related]
38. Inclusion complexes of quercetin with three β-cyclodextrins derivatives at physiological pH: spectroscopic study and antioxidant activity. Liu M; Dong L; Chen A; Zheng Y; Sun D; Wang X; Wang B Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():854-60. PubMed ID: 23892509 [TBL] [Abstract][Full Text] [Related]
39. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods. Zhang G; Wang L; Fu P; Hu M Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):424-31. PubMed ID: 21831703 [TBL] [Abstract][Full Text] [Related]
40. Spectrometric study of the interaction between alpinetin and bovine serum albumin using chemometrics approaches. Ni Y; Wang S; Kokot S Anal Chim Acta; 2010 Mar; 663(2):139-46. PubMed ID: 20206002 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]