These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24783949)

  • 1. Oxidation debris in graphene oxide is responsible for its inherent electroactivity.
    Bonanni A; Ambrosi A; Chua CK; Pumera M
    ACS Nano; 2014 May; 8(5):4197-204. PubMed ID: 24783949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of oxidation debris containing in graphene oxide on the adsorption and electrochemical properties of 1,10-phenanthroline-5,6-dione.
    Ma D; Dong L; Zhou M; Zhu L
    Analyst; 2016 Apr; 141(9):2761-6. PubMed ID: 26842426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual inherent electrochemistry of graphene oxides prepared using permanganate oxidants.
    Eng AY; Ambrosi A; Chua CK; Saněk F; Sofer Z; Pumera M
    Chemistry; 2013 Sep; 19(38):12673-83. PubMed ID: 23934966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of oxidative debris on graphene oxide films.
    López-Díaz D; Velázquez MM; Blanco de La Torre S; Pérez-Pisonero A; Trujillano R; García Fierro JL; Claramunt S; Cirera A
    Chemphyschem; 2013 Dec; 14(17):4002-9. PubMed ID: 24166869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.
    Hou J; Shao Y; Ellis MW; Moore RB; Yi B
    Phys Chem Chem Phys; 2011 Sep; 13(34):15384-402. PubMed ID: 21799983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications.
    Moo JG; Ambrosi A; Bonanni A; Pumera M
    Chem Asian J; 2012 Apr; 7(4):759-70. PubMed ID: 22298372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behavior of graphene oxide trapped at the air water interface.
    López-Diaz D; Merchán MD; Velázquez MM
    Adv Colloid Interface Sci; 2020 Dec; 286():102312. PubMed ID: 33166724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High correlation between oxidation loci on graphene oxide.
    Yang J; Shi G; Tu Y; Fang H
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10190-4. PubMed ID: 25044430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.
    Yu C; Ma P; Zhou X; Wang A; Qian T; Wu S; Chen Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17937-43. PubMed ID: 25247315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic Activities of Chemically Reduced Graphene Are Essentially Dominated by the Adhered Carbonaceous Debris.
    Li X; Ma D; Zhu L
    Chemistry; 2015 Nov; 21(48):17239-44. PubMed ID: 26471848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible electrical reduction and oxidation of graphene oxide.
    Ekiz OO; Urel M; Güner H; Mizrak AK; Dâna A
    ACS Nano; 2011 Apr; 5(4):2475-82. PubMed ID: 21391707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels.
    Loo AH; Bonanni A; Pumera M
    Nanoscale; 2013 Jun; 5(11):4758-62. PubMed ID: 23604556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications.
    Eng AY; Sofer Z; Šimek P; Kosina J; Pumera M
    Chemistry; 2013 Nov; 19(46):15583-92. PubMed ID: 24123303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection.
    Bonanni A; Chua CK; Zhao G; Sofer Z; Pumera M
    ACS Nano; 2012 Oct; 6(10):8546-51. PubMed ID: 22992186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions.
    Yoon KY; An SJ; Chen Y; Lee JH; Bryant SL; Ruoff RS; Huh C; Johnston KP
    J Colloid Interface Sci; 2013 Aug; 403():1-6. PubMed ID: 23683958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic control of electrochemical processes at electrode surface using iron-rich graphene materials with dual functionality.
    Lim CS; Ambrosi A; Sofer Z; Pumera M
    Nanoscale; 2014 Jul; 6(13):7391-6. PubMed ID: 24873903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials.
    Wang H; Casalongue HS; Liang Y; Dai H
    J Am Chem Soc; 2010 Jun; 132(21):7472-7. PubMed ID: 20443559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry of graphene: new horizons for sensing and energy storage.
    Pumera M
    Chem Rec; 2009; 9(4):211-23. PubMed ID: 19739147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.