These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24784099)
1. Vibrationally excited NO tagging by NO(A²∑⁺) fluorescence and quenching for simultaneous velocimetry and thermometry in gaseous flows. Sánchez-González R; Bowersox RD; North SW Opt Lett; 2014 May; 39(9):2771-4. PubMed ID: 24784099 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique. Pan F; Sánchez-González R; McIlvoy MH; Bowersox RD; North SW Opt Lett; 2016 Apr; 41(7):1376-9. PubMed ID: 27192240 [TBL] [Abstract][Full Text] [Related]
3. Temperature perturbation related to the invisible ink vibrationally excited nitric oxide monitoring (VENOM) technique: a simulation study. Winner JD; Pan F; McIlvoy MH; Bowersox RDW; North SW Appl Opt; 2019 Apr; 58(10):2702-2712. PubMed ID: 31045076 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique. Sánchez-González R; Srinivasan R; Bowersox RD; North SW Opt Lett; 2011 Jan; 36(2):196-8. PubMed ID: 21263498 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous velocity and temperature measurements in gaseous flowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study. Sánchez-González R; Bowersox RD; North SW Appl Opt; 2012 Mar; 51(9):1216-28. PubMed ID: 22441464 [TBL] [Abstract][Full Text] [Related]
6. Hydroxyl tagging velocimetry method optimization: signal intensity and spectroscopy. Ribarov LA; Hu S; Wehrmeyer JA; Pitz RW Appl Opt; 2005 Nov; 44(31):6616-26. PubMed ID: 16270550 [TBL] [Abstract][Full Text] [Related]
7. Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield. Hsu AG; Srinivasan R; Bowersox RD; North SW Appl Opt; 2009 Aug; 48(22):4414-23. PubMed ID: 19649046 [TBL] [Abstract][Full Text] [Related]
8. Vibrational distribution in NO(X2Pi) formed by self quenching of NO A 2Sigma+ (v=0). Hancock G; Saunders M Phys Chem Chem Phys; 2008 Apr; 10(15):2014-9. PubMed ID: 18688353 [TBL] [Abstract][Full Text] [Related]
9. State-resolved collisional relaxation of highly vibrationally excited CsH by CO2. Mu B; Cui X; Shen Y; Dai K Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():299-310. PubMed ID: 25909904 [TBL] [Abstract][Full Text] [Related]
10. A laser induced fluorescence study relating to physical properties of the iodine monoxide radical. Gravestock TJ; Blitz MA; Heard DE Phys Chem Chem Phys; 2010 Jan; 12(4):823-34. PubMed ID: 20066367 [TBL] [Abstract][Full Text] [Related]
11. State-resolved collisional quenching of vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) by D35Cl(v = 0). Li Z; Korobkova E; Werner K; Shum L; Mullin AS J Chem Phys; 2005 Nov; 123(17):174306. PubMed ID: 16375527 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved observations of vibrationally excited NO X Fletcher JD; Lanfri L; Ritchie GAD; Hancock G; Islam M; Richmond G Phys Chem Chem Phys; 2021 Sep; 23(36):20478-20488. PubMed ID: 34498634 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of N-OH bond dissociation in cyclopentanone and cyclohexanone oxime at 193 nm: laser-induced fluorescence detection of nascent OH (v'', J''). Kawade MN; Saha A; Upadhyaya HP; Kumar A; Naik PD J Phys Chem A; 2010 Dec; 114(47):12369-77. PubMed ID: 21058634 [TBL] [Abstract][Full Text] [Related]
14. Rate constants for collisional quenching of NO (A(2)Σ(+), v = 0) by He, Ne, Ar, Kr, and Xe, and infrared emission accompanying rare gas and impurity quenching. Few J; Hancock G Phys Chem Chem Phys; 2014 Jun; 16(22):11047-53. PubMed ID: 24777304 [TBL] [Abstract][Full Text] [Related]
15. Dissociation dynamics of thiolactic acid at 193 nm: detection of the nascent OH product by laser-induced fluorescence. Pushpa KK; Upadhyaya HP; Kumar A; Naik PD; Bajaj P; Mittal JP J Chem Phys; 2004 Apr; 120(15):6964-72. PubMed ID: 15267595 [TBL] [Abstract][Full Text] [Related]
16. Femtosecond laser activation and sensing of hydroxyl for velocimetry in reacting flows. Fisher JM; Brown AD; Lauriola DK; Slipchenko MN; Meyer TR Appl Opt; 2020 Dec; 59(34):10853-10861. PubMed ID: 33361906 [TBL] [Abstract][Full Text] [Related]
17. Collisional Energy Transfer from Highly Vibrationally Excited Radicals Is Very Efficient. Wilhelm MJ; Nikow M; Smith JM; Dai HL J Phys Chem Lett; 2013 Jan; 4(1):23-9. PubMed ID: 26291206 [TBL] [Abstract][Full Text] [Related]
18. Photodissociation dynamics of alkyl nitrites at 266 and 355 nm: the OH product channel. Yue XF; Sun JL; Yin HM; Wei Q; Han KL J Phys Chem A; 2009 Apr; 113(14):3303-10. PubMed ID: 19284722 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence. Hiller B; Hanson RK Appl Opt; 1988 Jan; 27(1):33-48. PubMed ID: 20523544 [TBL] [Abstract][Full Text] [Related]