These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Betley JN; Wright CV; Kawaguchi Y; Erdélyi F; Szabó G; Jessell TM; Kaltschmidt JA Cell; 2009 Oct; 139(1):161-74. PubMed ID: 19804761 [TBL] [Abstract][Full Text] [Related]
7. RORβ Spinal Interneurons Gate Sensory Transmission during Locomotion to Secure a Fluid Walking Gait. Koch SC; Del Barrio MG; Dalet A; Gatto G; Günther T; Zhang J; Seidler B; Saur D; Schüle R; Goulding M Neuron; 2017 Dec; 96(6):1419-1431.e5. PubMed ID: 29224725 [TBL] [Abstract][Full Text] [Related]
8. Impact of precision grip tasks on cervical spinal network excitability in humans. Roche N; Bussel B; Maier MA; Katz R; Lindberg P J Physiol; 2011 Jul; 589(Pt 14):3545-58. PubMed ID: 21606115 [TBL] [Abstract][Full Text] [Related]
9. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Seki K; Perlmutter SI; Fetz EE Nat Neurosci; 2003 Dec; 6(12):1309-16. PubMed ID: 14625555 [TBL] [Abstract][Full Text] [Related]
10. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat. Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013 [TBL] [Abstract][Full Text] [Related]
11. Early postnatal development of GABAergic presynaptic inhibition of Ia proprioceptive afferent connections in mouse spinal cord. Sonner PM; Ladle DR J Neurophysiol; 2013 Apr; 109(8):2118-28. PubMed ID: 23343895 [TBL] [Abstract][Full Text] [Related]
12. GABA facilitates spike propagation through branch points of sensory axons in the spinal cord. Hari K; Lucas-Osma AM; Metz K; Lin S; Pardell N; Roszko DA; Black S; Minarik A; Singla R; Stephens MJ; Pearce RA; Fouad K; Jones KE; Gorassini MA; Fenrich KK; Li Y; Bennett DJ Nat Neurosci; 2022 Oct; 25(10):1288-1299. PubMed ID: 36163283 [TBL] [Abstract][Full Text] [Related]
13. Neuronal Ig/Caspr recognition promotes the formation of axoaxonic synapses in mouse spinal cord. Ashrafi S; Betley JN; Comer JD; Brenner-Morton S; Bar V; Shimoda Y; Watanabe K; Peles E; Jessell TM; Kaltschmidt JA Neuron; 2014 Jan; 81(1):120-9. PubMed ID: 24411736 [TBL] [Abstract][Full Text] [Related]
16. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats. Wéber I; Veress G; Szucs P; Antal M; Birinyi A Brain Res; 2007 Oct; 1178():65-72. PubMed ID: 17920568 [TBL] [Abstract][Full Text] [Related]
17. Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. Ménard A; Leblond H; Gossard JP J Neurophysiol; 2002 Jul; 88(1):163-71. PubMed ID: 12091542 [TBL] [Abstract][Full Text] [Related]
18. In search of lost presynaptic inhibition. Rudomin P Exp Brain Res; 2009 Jun; 196(1):139-51. PubMed ID: 19322562 [TBL] [Abstract][Full Text] [Related]
19. Thalamic microcircuits: presynaptic dendrites form two feedforward inhibitory pathways in thalamus. Crandall SR; Cox CL J Neurophysiol; 2013 Jul; 110(2):470-80. PubMed ID: 23615551 [TBL] [Abstract][Full Text] [Related]
20. Independent control of presynaptic inhibition by reticulospinal and sensory inputs at rest and during rhythmic activities in the cat. Sirois J; Frigon A; Gossard JP J Neurosci; 2013 May; 33(18):8055-67. PubMed ID: 23637195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]