These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 24784255)
1. Sampling saddle points on a free energy surface. Samanta A; Chen M; Yu TQ; Tuckerman M; E W J Chem Phys; 2014 Apr; 140(16):164109. PubMed ID: 24784255 [TBL] [Abstract][Full Text] [Related]
2. Comparison of methods for finding saddle points without knowledge of the final states. Olsen RA; Kroes GJ; Henkelman G; Arnaldsson A; Jónsson H J Chem Phys; 2004 Nov; 121(20):9776-92. PubMed ID: 15549851 [TBL] [Abstract][Full Text] [Related]
3. Atomistic simulations of rare events using gentlest ascent dynamics. Samanta A; E W J Chem Phys; 2012 Mar; 136(12):124104. PubMed ID: 22462832 [TBL] [Abstract][Full Text] [Related]
4. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
5. A stability boundary based method for finding saddle points on potential energy surfaces. Reddy CK; Chiang HD J Comput Biol; 2006 Apr; 13(3):745-66. PubMed ID: 16706723 [TBL] [Abstract][Full Text] [Related]
6. Finite-Temperature Dimer Method for Finding Saddle Points on Free Energy Surfaces. Zhang H; Qiu L; Hu D J Comput Chem; 2019 Jul; 40(18):1701-1706. PubMed ID: 30895645 [TBL] [Abstract][Full Text] [Related]
7. Locating landmarks on high-dimensional free energy surfaces. Chen M; Yu TQ; Tuckerman ME Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3235-40. PubMed ID: 25737545 [TBL] [Abstract][Full Text] [Related]
8. An algorithm to find minimum free-energy paths using umbrella integration. Bohner MU; Kästner J J Chem Phys; 2012 Jul; 137(3):034105. PubMed ID: 22830681 [TBL] [Abstract][Full Text] [Related]
9. Direct determination of reaction paths and stationary points on potential of mean force surfaces. Li G; Cui Q J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650 [TBL] [Abstract][Full Text] [Related]
10. Methods to locate saddle points in complex landscapes. Bonfanti S; Kob W J Chem Phys; 2017 Nov; 147(20):204104. PubMed ID: 29195295 [TBL] [Abstract][Full Text] [Related]
12. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals. Li C; Lu J; Yang W J Chem Phys; 2015 Dec; 143(22):224110. PubMed ID: 26671361 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical Protein Free Energy Landscapes from Variationally Enhanced Sampling. Shaffer P; Valsson O; Parrinello M J Chem Theory Comput; 2016 Dec; 12(12):5751-5757. PubMed ID: 27813415 [TBL] [Abstract][Full Text] [Related]
14. Multiple pathways in conformational transitions of the alanine dipeptide: an application of dynamic importance sampling. Jang H; Woolf TB J Comput Chem; 2006 Aug; 27(11):1136-41. PubMed ID: 16721720 [TBL] [Abstract][Full Text] [Related]
15. String method in collective variables: minimum free energy paths and isocommittor surfaces. Maragliano L; Fischer A; Vanden-Eijnden E; Ciccotti G J Chem Phys; 2006 Jul; 125(2):24106. PubMed ID: 16848576 [TBL] [Abstract][Full Text] [Related]
16. Heating and flooding: a unified approach for rapid generation of free energy surfaces. Chen M; Cuendet MA; Tuckerman ME J Chem Phys; 2012 Jul; 137(2):024102. PubMed ID: 22803523 [TBL] [Abstract][Full Text] [Related]
17. A method for finding the ridge between saddle points applied to rare event rate estimates. Maronsson JB; Jónsson H; Vegge T Phys Chem Chem Phys; 2012 Feb; 14(8):2884-91. PubMed ID: 22262088 [TBL] [Abstract][Full Text] [Related]
18. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Chu JW; Voth GA Biophys J; 2007 Dec; 93(11):3860-71. PubMed ID: 17704151 [TBL] [Abstract][Full Text] [Related]
19. Finding Free-Energy Landmarks of Chemical Reactions. Shiga M; Tuckerman ME J Phys Chem Lett; 2018 Nov; 9(21):6207-6214. PubMed ID: 30286601 [TBL] [Abstract][Full Text] [Related]