These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24784259)

  • 1. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.
    Ledermüller K; Schütz M
    J Chem Phys; 2014 Apr; 140(16):164113. PubMed ID: 24784259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local CC2 response method based on the Laplace transform: orbital-relaxed first-order properties for excited states.
    Ledermüller K; Kats D; Schütz M
    J Chem Phys; 2013 Aug; 139(8):084111. PubMed ID: 24006978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multistate local coupled cluster CC2 response method based on the Laplace transform.
    Kats D; Schütz M
    J Chem Phys; 2009 Sep; 131(12):124117. PubMed ID: 19791862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties.
    Freundorfer K; Kats D; Korona T; Schütz M
    J Chem Phys; 2010 Dec; 133(24):244110. PubMed ID: 21197979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs.
    Winter NO; Hättig C
    J Chem Phys; 2011 May; 134(18):184101. PubMed ID: 21568491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local CC2 electronic excitation energies for large molecules with density fitting.
    Kats D; Korona T; Schütz M
    J Chem Phys; 2006 Sep; 125(10):104106. PubMed ID: 16999514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).
    Schütz M
    J Chem Phys; 2015 Jun; 142(21):214103. PubMed ID: 26049475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excited state polarizabilities for CC2 using the resolution-of-the-identity approximation.
    Graf NK; Friese DH; Winter NO; Hättig C
    J Chem Phys; 2015 Dec; 143(24):244108. PubMed ID: 26723652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states.
    Hellweg A; Grün SA; Hättig C
    Phys Chem Chem Phys; 2008 Jul; 10(28):4119-27. PubMed ID: 18612515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition strengths and first-order properties of excited states from local coupled cluster CC2 response theory with density fitting.
    Kats D; Korona T; Schütz M
    J Chem Phys; 2007 Aug; 127(6):064107. PubMed ID: 17705588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies.
    Helmich B; Hättig C
    J Chem Phys; 2013 Aug; 139(8):084114. PubMed ID: 24006981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory.
    Neugebauer J; Hess BA
    J Chem Phys; 2004 Jun; 120(24):11564-77. PubMed ID: 15268191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytic energy gradients for constrained DFT-configuration interaction.
    Kaduk B; Tsuchimochi T; Van Voorhis T
    J Chem Phys; 2014 May; 140(18):18A503. PubMed ID: 24832311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GVVPT2 energy gradient using a Lagrangian formulation.
    Theis D; Khait YG; Hoffmann MR
    J Chem Phys; 2011 Jul; 135(4):044117. PubMed ID: 21806100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio excited state properties and dynamics of a prototype sigma-bridged-donor-acceptor molecule.
    Tapavicza E; Tavernelli I; Rothlisberger U
    J Phys Chem A; 2009 Sep; 113(35):9595-602. PubMed ID: 19663389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic gradients for the state-specific multireference coupled cluster singles and doubles model.
    Prochnow E; Evangelista FA; Schaefer HF; Allen WD; Gauss J
    J Chem Phys; 2009 Aug; 131(6):064109. PubMed ID: 19691380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hierarchy of local coupled cluster singles and doubles response methods for ionization potentials.
    Wälz G; Usvyat D; Korona T; Schütz M
    J Chem Phys; 2016 Feb; 144(8):084117. PubMed ID: 26931691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication: Analytic gradients for the complex absorbing potential equation-of-motion coupled-cluster method.
    Benda Z; Jagau TC
    J Chem Phys; 2017 Jan; 146(3):031101. PubMed ID: 28109233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-order nonadiabatic coupling matrix elements between excited states: a Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels.
    Li Z; Liu W
    J Chem Phys; 2014 Jul; 141(1):014110. PubMed ID: 25005280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.