These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

787 related articles for article (PubMed ID: 24784283)

  • 1. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleation of a stable solid from melt in the presence of multiple metastable intermediate phases: wetting, Ostwald's step rule, and vanishing polymorphs.
    Santra M; Singh RS; Bagchi B
    J Phys Chem B; 2013 Oct; 117(42):13154-63. PubMed ID: 23713546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water.
    Jacobson LC; Hujo W; Molinero V
    J Phys Chem B; 2009 Jul; 113(30):10298-307. PubMed ID: 19585976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-uniformities in polymer/liquid crystal mixtures II. Nematic nucleation.
    Matsuyama A; Evans RM; Cates ME
    Eur Phys J E Soft Matter; 2002 Sep; 9(1):89-95. PubMed ID: 15010934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.
    Buhariwalla CR; Bowles RK; Saika-Voivod I; Sciortino F; Poole PH
    Eur Phys J E Soft Matter; 2015 May; 38(5):124. PubMed ID: 25985943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water.
    Singh RS; Biddle JW; Debenedetti PG; Anisimov MA
    J Chem Phys; 2016 Apr; 144(14):144504. PubMed ID: 27083735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of ice nucleation in liquid water.
    Wang X; Wang S; Xu Q; Mi J
    J Phys Chem B; 2015 Jan; 119(4):1660-8. PubMed ID: 25546012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.
    Biddle JW; Holten V; Anisimov MA
    J Chem Phys; 2014 Aug; 141(7):074504. PubMed ID: 25149798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test of classical nucleation theory on deeply supercooled high-pressure simulated silica.
    Saika-Voivod I; Poole PH; Bowles RK
    J Chem Phys; 2006 Jun; 124(22):224709. PubMed ID: 16784303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride.
    Leyssale JM; Delhommelle J; Millot C
    J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation behavior of C2H6 hydrate at temperatures below the ice point: melting to liquid water followed by ice nucleation.
    Ohno H; Oyabu I; Iizuka Y; Hondoh T; Narita H; Nagao J
    J Phys Chem A; 2011 Aug; 115(32):8889-94. PubMed ID: 21744826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water.
    Poole PH; Becker SR; Sciortino F; Starr FW
    J Phys Chem B; 2011 Dec; 115(48):14176-83. PubMed ID: 21866981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-energy landscape of nucleation with an intermediate metastable phase studied using capillarity approximation.
    Iwamatsu M
    J Chem Phys; 2011 Apr; 134(16):164508. PubMed ID: 21528974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous Vapor and Ice Nucleation in Water at Negative Pressures: A Classical Density Functional Theory Study.
    Singh Y; Santra M; Singh RS
    J Phys Chem B; 2023 Apr; 127(14):3312-3324. PubMed ID: 36989467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.
    Wedekind J; Xu L; Buldyrev SV; Stanley HE; Reguera D; Franzese G
    Sci Rep; 2015 Jun; 5():11260. PubMed ID: 26095898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation of bulk phases in the HCl/H2O system.
    Henson BF; Wilson KR; Robinson JM; Nobel CA; Casson JL; Voss LF; Worsnop DR
    J Phys Chem A; 2007 Sep; 111(35):8635-41. PubMed ID: 17691759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Glass Transition and Structural Relaxation on Crystal Nucleation: Theoretical Description and Model Analysis.
    Schmelzer JWP; Tropin TV; Fokin VM; Abyzov AS; Zanotto ED
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of nucleation phenomena on range of interaction potential.
    Singh RS; Santra M; Bagchi B
    J Chem Phys; 2012 Feb; 136(8):084701. PubMed ID: 22380053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.