BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24784407)

  • 1. WAXS fat subtraction model to estimate differential linear scattering coefficients of fatless breast tissue: phantom materials evaluation.
    Tang RY; Laamanen C; McDonald N; LeClair RJ
    Med Phys; 2014 May; 41(5):053501. PubMed ID: 24784407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: animal tissue evaluation.
    Tang RY; McDonald N; Laamanen C; LeClair RJ
    Med Phys; 2014 Nov; 41(11):113501. PubMed ID: 25370672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements.
    LeClair RJ; Boileau MM; Wang Y
    Med Phys; 2006 Apr; 33(4):959-67. PubMed ID: 16696472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updated breast CT dose coefficients (DgN
    Hernandez AM; Becker AE; Boone JM
    Med Phys; 2019 Mar; 46(3):1455-1466. PubMed ID: 30661250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum momentum transfer arguments for x-ray forward scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 2002 Dec; 29(12):2881-90. PubMed ID: 12512723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithmic scatter correction in dual-energy digital mammography.
    Chen X; Nishikawa RM; Chan ST; Lau BA; Zhang L; Mou X
    Med Phys; 2013 Nov; 40(11):111919. PubMed ID: 24320452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model predictions for the wide-angle x-ray scatter signals of healthy and malignant breast duct biopsies.
    LeClair RJ; Ferreira A; McDonald N; Laamanen C; Tang RY
    J Med Imaging (Bellingham); 2015 Oct; 2(4):043502. PubMed ID: 26835493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered.
    Hernandez AM; Seibert JA; Boone JM
    Med Phys; 2015 Nov; 42(11):6337-48. PubMed ID: 26520725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray forward-scatter imaging: experimental validation of model.
    Leclair RJ; Johns PC
    Med Phys; 2001 Feb; 28(2):210-9. PubMed ID: 11243346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.
    Freed M; Badal A; Jennings RJ; de las Heras H; Myers KJ; Badano A
    Phys Med Biol; 2011 Jun; 56(12):3513-33. PubMed ID: 21606556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel physical anthropomorphic breast phantom for 2D and 3D x-ray imaging.
    Ikejimba LC; Graff CG; Rosenthal S; Badal A; Ghammraoui B; Lo JY; Glick SJ
    Med Phys; 2017 Feb; 44(2):407-416. PubMed ID: 27992059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations.
    Yang K; Li X; Liu B
    Med Phys; 2016 Mar; 43(3):1096-110. PubMed ID: 26936697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattered radiation in scanning slot mammography.
    Jing Z; Huda W; Walker JK
    Med Phys; 1998 Jul; 25(7 Pt 1):1111-7. PubMed ID: 9682196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 1st generation scatter CT algorithm for electron density breast imaging which accounts for bound incoherent, coherent and multiple scatter: A Monte Carlo study.
    Alpuche Aviles JE; Pistorius S; Elbakri IA; Gordon R; Ahmad B
    J Xray Sci Technol; 2011; 19(4):477-99. PubMed ID: 25214381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A semianalytic model to investigate the potential applications of x-ray scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 1998 Jun; 25(6):1008-20. PubMed ID: 9650191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of X-ray scattering for various phantoms and clinical breast geometries using breast CT on a dedicated hybrid system.
    Shah JP; Mann SD; Tornai MP
    J Xray Sci Technol; 2017; 25(3):373-389. PubMed ID: 28157120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion.
    King BW; Landheer KA; Johns PC
    Phys Med Biol; 2011 Jul; 56(14):4377-97. PubMed ID: 21709341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations.
    Jarry G; Graham SA; Moseley DJ; Jaffray DJ; Siewerdsen JH; Verhaegen F
    Med Phys; 2006 Nov; 33(11):4320-9. PubMed ID: 17153411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of transmission properties of breast tissue equivalent materials under Compton scatter imaging setup.
    Yang K; Geng C; Li X; Liu B
    Phys Med; 2020 Apr; 72():32-38. PubMed ID: 32197220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.