BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 24784454)

  • 1. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.
    Lochmatter S; Holliger C
    Water Res; 2014 Aug; 59():58-70. PubMed ID: 24784454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time control strategy for simultaneous nitrogen and phosphorus removal using aerobic granular sludge.
    Kishida N; Tsuneda S; Sakakibara Y; Kim JH; Sudo R
    Water Sci Technol; 2008; 58(2):445-50. PubMed ID: 18701799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Simultaneous phosphorus and nitrogen removal of domestic sewage with aerobic granular sludge SBR].
    Lu S; Ji M; Wang JF; Wei YJ
    Huan Jing Ke Xue; 2007 Aug; 28(8):1687-92. PubMed ID: 17926394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge.
    Lochmatter S; Gonzalez-Gil G; Holliger C
    Water Res; 2013 Oct; 47(16):6187-97. PubMed ID: 23948562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of carbon source on nutrient removal performance and physical-chemical characteristics of aerobic granular sludge.
    Lashkarizadeh M; Yuan Q; Oleszkiewicz JA
    Environ Technol; 2015; 36(17):2161-7. PubMed ID: 25719420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid formation and pollutant removal ability of aerobic granules in a sequencing batch airlift reactor at low temperature.
    Jiang Y; Shang Y; Wang H; Yang K
    Environ Technol; 2016 Dec; 37(23):3078-85. PubMed ID: 27166437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules.
    Pijuan M; Werner U; Yuan Z
    Water Res; 2011 Oct; 45(16):5075-83. PubMed ID: 21803396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms.
    Zhou Y; Pijuan M; Yuan Z
    Water Res; 2008 Jun; 42(12):3207-17. PubMed ID: 18472126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Simultaneous nitrogen and phosphorus removal by aerobic granular sludge at normal and low temperatures].
    Chen RN; Gao JF; Guo JQ; Su K; Zhang Q
    Huan Jing Ke Xue; 2009 Oct; 30(10):2995-3001. PubMed ID: 19968120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of influent COD/N ratio on disintegration of aerobic granular sludge.
    Luo J; Hao T; Wei L; Mackey HR; Lin Z; Chen GH
    Water Res; 2014 Oct; 62():127-35. PubMed ID: 24950459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal.
    Sarvajith M; Nancharaiah YV
    Environ Res; 2023 May; 224():115500. PubMed ID: 36791839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Long-term Stability of Aerobic Granular Sludge Under Low Carbon to Nitrogen Ratio].
    Yuan QJ; Zhang HX; Chen FY
    Huan Jing Ke Xue; 2020 Oct; 41(10):4661-4668. PubMed ID: 33124399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of biological removal via nitrite with real-time control using aerobic granular sludge and flocculent activated sludge.
    Gao D; Yuan X; Liang H; Wu WM
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1645-52. PubMed ID: 20972676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Water Res; 2007 Jun; 41(12):2590-8. PubMed ID: 17433405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of phosphorus removal in a low temperature A(2)/O process by anaerobic phosphorus release of activated sludge.
    Li J; Jin Y; Guo Y; He J
    Water Sci Technol; 2013; 67(11):2437-43. PubMed ID: 23752374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater.
    Ab Halim MH; Nor Anuar A; Abdul Jamal NS; Azmi SI; Ujang Z; Bob MM
    J Environ Manage; 2016 Dec; 184(Pt 2):271-280. PubMed ID: 27720606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Startup and stable operation of advanced continuous flow reactor and the changes of microbial communities in aerobic granular sludge.
    Li S; Li D; Wang Y; Zeng H; Yuan Y; Zhang J
    Chemosphere; 2020 Mar; 243():125434. PubMed ID: 31995884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.
    Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ
    Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of aerobic granular sludge at variable circulation rate in anaerobic-aerobic conditions.
    Harun H; Anuar AN; Ujang Z; Rosman NH; Othman I
    Water Sci Technol; 2014; 69(11):2252-7. PubMed ID: 24901619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.