These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24784621)

  • 1. Organic ferroelectric evaporator with substrate cooling and in situ transport capabilities.
    Foreman K; Labedz C; Shearer M; Adenwalla S
    Rev Sci Instrum; 2014 Apr; 85(4):043902. PubMed ID: 24784621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer-arm evaporator cell for rapid loading and deposition of organic thin films.
    Greiner MT; Helander MG; Wang ZB; Lu ZH
    Rev Sci Instrum; 2009 Dec; 80(12):125101. PubMed ID: 20059164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-vacuum deposition system for in situ and real-time electrical characterization of organic thin-film transistors.
    Quiroga SD; Shehu A; Albonetti C; Murgia M; Stoliar P; Borgatti F; Biscarini F
    Rev Sci Instrum; 2011 Feb; 82(2):025110. PubMed ID: 21361636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes.
    Weiss T; Nowak M; Mundloch U; Zielasek V; Kohse-Höinghaus K; Bäumer M
    Rev Sci Instrum; 2014 Oct; 85(10):104104. PubMed ID: 25362422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasmooth Organic Films Via Efficient Aggregation Suppression by a Low-Vacuum Physical Vapor Deposition.
    Yoon Y; Lee J; Lee S; Kim S; Choi HC
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications.
    Biswas S; Shalev O; Shtein M
    Annu Rev Chem Biomol Eng; 2013; 4():289-317. PubMed ID: 23540286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-vacuum organic molecular-beam deposition system for in situ growth and characterization.
    Annese E; Dos Santos JE; Rodrigues GLMP; Rocha AS; de Moraes HR; Cezar JC
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1658-1663. PubMed ID: 30407175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a physical vapor transport cell for time controlled deposition of nucleation phase organic thin films.
    Mea JS; Gauvin S; Ashrit PV
    Rev Sci Instrum; 2007 Apr; 78(4):043902. PubMed ID: 17477676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth dynamics of pentacene thin films.
    Meyer zu Heringdorf FJ; Reuter MC; Tromp RM
    Nature; 2001 Aug; 412(6846):517-20. PubMed ID: 11484047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers.
    George SM; Yoon B; Dameron AA
    Acc Chem Res; 2009 Apr; 42(4):498-508. PubMed ID: 19249861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 350 mK, 9 T scanning tunneling microscope for the study of superconducting thin films on insulating substrates and single crystals.
    Kamlapure A; Saraswat G; Ganguli SC; Bagwe V; Raychaudhuri P; Pai SP
    Rev Sci Instrum; 2013 Dec; 84(12):123905. PubMed ID: 24387444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ synchrotron X-ray studies of ferroelectric thin films.
    Fong DD; Eastman JA; Stephenson GB; Fuoss PH; Streiffer SK; Thompson C; Auciello O
    J Synchrotron Radiat; 2005 Mar; 12(Pt 2):163-7. PubMed ID: 15728968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ growth and characterization of ultrahard thin films.
    Bengu E; Collazo-Davila C; Grozea D; Landree E; Widlow I; Guruz M; Marks LD
    Microsc Res Tech; 1998 Aug; 42(4):295-301. PubMed ID: 9779834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave characterization of nanostructured ferroelectric Ba(0.6)Sr(0.4)TiO(3) thin films fabricated by pulsed laser deposition.
    Campbell AL; Biggers RR; Subramanyam G; Kozlowski G; Kleismit RA; Zate HN; Hopkins SC; Glowacki BA; Riehl BD; Peterson TL
    Nanotechnology; 2008 Dec; 19(48):485704. PubMed ID: 21836311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An (ultra) high-vacuum compatible sputter source for oxide thin film growth.
    Mayr L; Köpfle N; Auer A; Klötzer B; Penner S
    Rev Sci Instrum; 2013 Sep; 84(9):094103. PubMed ID: 24089841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a new laser heating system for thin film growth by chemical vapor deposition.
    Fujimoto E; Sumiya M; Ohnishi T; Lippmaa M; Takeguchi M; Koinuma H; Matsumoto Y
    Rev Sci Instrum; 2012 Sep; 83(9):094701. PubMed ID: 23020398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ nanocalorimetry of thin glassy organic films.
    León-Gutierrez E; Garcia G; Lopeandía AF; Fraxedas J; Clavaguera-Mora MT; Rodríguez-Viejo J
    J Chem Phys; 2008 Nov; 129(18):181101. PubMed ID: 19045378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth-related properties and postgrowth phenomena in organic molecular thin films.
    Campione M; Borghesi A; Laicini M; Sassella A; Goletti C; Bussetti G; Chiaradia P
    J Chem Phys; 2007 Dec; 127(24):244703. PubMed ID: 18163691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of substrate temperatures and deposition rates on properties of aluminum fluoride thin films in deep-ultraviolet region.
    Sun J; Li X; Zhang W; Yi K; Shao J
    Appl Opt; 2012 Dec; 51(35):8481-9. PubMed ID: 23262545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin organic semiconductor films--soft matter effect.
    Wang T; Yan D
    Adv Colloid Interface Sci; 2014 May; 207():332-46. PubMed ID: 24548597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.