These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 24784660)

  • 1. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method.
    Kwon B; Baek SH; Kim SK; Kim JS
    Rev Sci Instrum; 2014 Apr; 85(4):045108. PubMed ID: 24784660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of the Electrical and Thermal Extrinsic Effects in Thermoelectric Measurements by the Harman Method.
    Kang MS; Roh IJ; Lee YG; Baek SH; Kim SK; Ju BK; Hyun DB; Kim JS; Kwon B
    Sci Rep; 2016 May; 6():26507. PubMed ID: 27197596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric characterization by transient Harman method under nonideal contact and boundary conditions.
    Castillo EE; Hapenciuc CL; Borca-Tasciuc T
    Rev Sci Instrum; 2010 Apr; 81(4):044902. PubMed ID: 20441361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harman Measurements for Thermoelectric Materials and Modules under Non-Adiabatic Conditions.
    Roh IJ; Lee YG; Kang MS; Lee JU; Baek SH; Kim SK; Ju BK; Hyun DB; Kim JS; Kwon B
    Sci Rep; 2016 Dec; 6():39131. PubMed ID: 27966622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Apr; 85(4):045107. PubMed ID: 24784659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement of all thermoelectric properties of bulk materials in the temperature range 300-600 K.
    Kolb H; Dasgupta T; Zabrocki K; Mueller E; de Boor J
    Rev Sci Instrum; 2015 Jul; 86(7):073901. PubMed ID: 26233393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note: High resolution alternating current/direct current Harman technique.
    Chavez R; Becker A; Bartel M; Kessler V; Schierning G; Schmechel R
    Rev Sci Instrum; 2013 Oct; 84(10):106106. PubMed ID: 24182179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proposal of time domain impedance spectroscopy to determine precise dimensionless figure of merit for thermoelectric modules within minutes.
    Hasegawa Y; Takeuchi M
    Sci Rep; 2022 Jul; 12(1):11967. PubMed ID: 35831398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate new method to measure the dimensionless figure of merit of thermoelectric devices based on the complex impedance porcupine diagram.
    De Marchi A; Giaretto V
    Rev Sci Instrum; 2011 Oct; 82(10):104904. PubMed ID: 22047320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated measurement of thermoelectric properties for filamentary materials using a modified hot wire method.
    Lu R; Yang X; Wang C; Shen Y; Zhang T; Zheng X; Chen H
    Rev Sci Instrum; 2022 Dec; 93(12):125107. PubMed ID: 36586900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature Z-meter setup for characterizing thermoelectric material under large temperature gradient.
    Amatya R; Mayer PM; Ram RJ
    Rev Sci Instrum; 2012 Jul; 83(7):075117. PubMed ID: 22852734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelectric properties and efficiency measurements under large temperature differences.
    Muto A; Kraemer D; Hao Q; Ren ZF; Chen G
    Rev Sci Instrum; 2009 Sep; 80(9):093901. PubMed ID: 19791947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants.
    Mengistie DA; Chen CH; Boopathi KM; Pranoto FW; Li LJ; Chu CW
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):94-100. PubMed ID: 25475257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric efficiency of organometallic complex wires via quantum resonance effect and long-range electric transport property.
    Nakamura H; Ohto T; Ishida T; Asai Y
    J Am Chem Soc; 2013 Nov; 135(44):16545-52. PubMed ID: 24102142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-probe measurements of the in-plane thermoelectric properties of nanofilms.
    Mavrokefalos A; Pettes MT; Zhou F; Shi L
    Rev Sci Instrum; 2007 Mar; 78(3):034901. PubMed ID: 17411207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures.
    Girard SN; He J; Zhou X; Shoemaker D; Jaworski CM; Uher C; Dravid VP; Heremans JP; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(41):16588-97. PubMed ID: 21902270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two omega method for active thermocouple microscopy.
    Thiery L; Gavignet E; Cretin B
    Rev Sci Instrum; 2009 Mar; 80(3):034901. PubMed ID: 19334942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the thermoelectric transport properties of graphyne by the first-principles method.
    Wang XM; Mo DC; Lu SS
    J Chem Phys; 2013 May; 138(20):204704. PubMed ID: 23742497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.