These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 24784743)
1. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Barberán A; Henley J; Fierer N; Casamayor EO Sci Total Environ; 2014 Jul; 487():187-95. PubMed ID: 24784743 [TBL] [Abstract][Full Text] [Related]
2. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Hervàs A; Camarero L; Reche I; Casamayor EO Environ Microbiol; 2009 Jun; 11(6):1612-23. PubMed ID: 19453609 [TBL] [Abstract][Full Text] [Related]
3. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms. Weil T; De Filippo C; Albanese D; Donati C; Pindo M; Pavarini L; Carotenuto F; Pasqui M; Poto L; Gabrieli J; Barbante C; Sattler B; Cavalieri D; Miglietta F Microbiome; 2017 Mar; 5(1):32. PubMed ID: 28283029 [TBL] [Abstract][Full Text] [Related]
4. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Cáliz J; Triadó-Margarit X; Camarero L; Casamayor EO Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12229-12234. PubMed ID: 30420511 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Maki T; Susuki S; Kobayashi F; Kakikawa M; Tobo Y; Yamada M; Higashi T; Matsuki A; Hong C; Hasegawa H; Iwasaka Y Sci Total Environ; 2010 Sep; 408(20):4556-62. PubMed ID: 20598737 [TBL] [Abstract][Full Text] [Related]
6. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Gandolfi I; Bertolini V; Bestetti G; Ambrosini R; Innocente E; Rampazzo G; Papacchini M; Franzetti A Appl Microbiol Biotechnol; 2015 Jun; 99(11):4867-77. PubMed ID: 25592734 [TBL] [Abstract][Full Text] [Related]
7. Continental-scale distributions of dust-associated bacteria and fungi. Barberán A; Ladau J; Leff JW; Pollard KS; Menninger HL; Dunn RR; Fierer N Proc Natl Acad Sci U S A; 2015 May; 112(18):5756-61. PubMed ID: 25902536 [TBL] [Abstract][Full Text] [Related]
8. Bacterial and archaeal community structure in the surface microlayer of high mountain lakes examined under two atmospheric aerosol loading scenarios. Vila-Costa M; Barberan A; Auguet JC; Sharma S; Moran MA; Casamayor EO FEMS Microbiol Ecol; 2013 May; 84(2):387-97. PubMed ID: 23289422 [TBL] [Abstract][Full Text] [Related]
9. Recently deglaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere. Stres B; Sul WJ; Murovec B; Tiedje JM PLoS One; 2013; 8(9):e76440. PubMed ID: 24086740 [TBL] [Abstract][Full Text] [Related]
10. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Bowers RM; Clements N; Emerson JB; Wiedinmyer C; Hannigan MP; Fierer N Environ Sci Technol; 2013; 47(21):12097-106. PubMed ID: 24083487 [TBL] [Abstract][Full Text] [Related]
11. Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean. Mazar Y; Cytryn E; Erel Y; Rudich Y Environ Sci Technol; 2016 Apr; 50(8):4194-202. PubMed ID: 27001166 [TBL] [Abstract][Full Text] [Related]
12. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Maki T; Puspitasari F; Hara K; Yamada M; Kobayashi F; Hasegawa H; Iwasaka Y Sci Total Environ; 2014 Aug; 488-489():75-84. PubMed ID: 24815557 [TBL] [Abstract][Full Text] [Related]
13. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Bertolini V; Gandolfi I; Ambrosini R; Bestetti G; Innocente E; Rampazzo G; Franzetti A Appl Microbiol Biotechnol; 2013 Jul; 97(14):6561-70. PubMed ID: 23053100 [TBL] [Abstract][Full Text] [Related]
14. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Triadó-Margarit X; Cáliz J; Casamayor EO Environ Int; 2022 Jan; 158():106916. PubMed ID: 34627012 [TBL] [Abstract][Full Text] [Related]
15. Respirable Metals, Bacteria, and Fungi during a Saharan-Sahelian Dust Event in Houston, Texas. Das S; McEwen A; Prospero J; Spalink D; Chellam S Environ Sci Technol; 2023 Dec; 57(48):19942-19955. PubMed ID: 37943153 [TBL] [Abstract][Full Text] [Related]
16. Strong Saharan Dust Deposition Events Alter Microbial Diversity and Composition in Sediments of High-Mountain Lakes of Sierra Nevada (Spain). Castellano-Hinojosa A; Tortosa G; Fernández-Zambrano A; Correa-Galeote D; Bedmar EJ; Medina-Sánchez JM Microb Ecol; 2024 Jul; 87(1):99. PubMed ID: 39066818 [TBL] [Abstract][Full Text] [Related]
17. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world. Barberán A; Casamayor EO Mol Ecol; 2014 Dec; 23(23):5868-76. PubMed ID: 25327842 [TBL] [Abstract][Full Text] [Related]
18. Changes in the airborne bacterial community in outdoor environments following Asian dust events. Yamaguchi N; Park J; Kodama M; Ichijo T; Baba T; Nasu M Microbes Environ; 2014; 29(1):82-8. PubMed ID: 24553107 [TBL] [Abstract][Full Text] [Related]
19. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Jiménez L; Rühland KM; Jeziorski A; Smol JP; Pérez-Martínez C Glob Chang Biol; 2018 Jan; 24(1):e139-e158. PubMed ID: 28833814 [TBL] [Abstract][Full Text] [Related]
20. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season. Prasad AK; El-Askary H; Kafatos M Environ Pollut; 2010 Nov; 158(11):3385-91. PubMed ID: 20797813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]