BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24784792)

  • 1. Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions.
    Seol YJ; Park JY; Jung JW; Jang J; Girdhari R; Kim SW; Cho DW
    Tissue Eng Part A; 2014 Nov; 20(21-22):2840-9. PubMed ID: 24784792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique microstructural design of ceramic scaffolds for bone regeneration under load.
    Roohani-Esfahani SI; Dunstan CR; Li JJ; Lu Z; Davies B; Pearce S; Field J; Williams R; Zreiqat H
    Acta Biomater; 2013 Jun; 9(6):7014-24. PubMed ID: 23467040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model.
    Bi L; Rahaman MN; Day DE; Brown Z; Samujh C; Liu X; Mohammadkhah A; Dusevich V; Eick JD; Bonewald LF
    Acta Biomater; 2013 Aug; 9(8):8015-26. PubMed ID: 23643606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of blended polycaprolactone/poly(lactic-co-glycolic acid)/β-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration.
    Shim JH; Huh JB; Park JY; Jeon YC; Kang SS; Kim JY; Rhie JW; Cho DW
    Tissue Eng Part A; 2013 Feb; 19(3-4):317-28. PubMed ID: 22934667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration.
    Xiao W; Fu H; Rahaman MN; Liu Y; Bal BS
    Acta Biomater; 2013 Sep; 9(9):8374-83. PubMed ID: 23747325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration.
    Li H; Yang L; Dong X; Gu Y; Lv G; Yan Y
    J Mater Sci Mater Med; 2014 May; 25(5):1257-65. PubMed ID: 24488438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds.
    Liu X; Rahaman MN; Liu Y; Bal BS; Bonewald LF
    Acta Biomater; 2013 Jul; 9(7):7506-17. PubMed ID: 23567939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2.
    Ishack S; Mediero A; Wilder T; Ricci JL; Cronstein BN
    J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):366-375. PubMed ID: 26513656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration.
    Perez RA; Kim JH; Buitrago JO; Wall IB; Kim HW
    Acta Biomater; 2015 Sep; 23():295-308. PubMed ID: 26054564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS
    J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Bone tissue engineering. Reconstruction of critical sized segmental bone defects in the ovine tibia].
    Reichert JC; Epari DR; Wullschleger ME; Berner A; Saifzadeh S; Nöth U; Dickinson IC; Schuetz MA; Hutmacher DW
    Orthopade; 2012 Apr; 41(4):280-7. PubMed ID: 22476418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity.
    Wang MM; Flores RL; Witek L; Torroni A; Ibrahim A; Wang Z; Liss HA; Cronstein BN; Lopez CD; Maliha SG; Coelho PG
    Sci Rep; 2019 Dec; 9(1):18439. PubMed ID: 31804544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repairing calvarial defects with biodegradable polycaprolactone-chitosan scaffolds fabricated using the melt stretching and multilayer deposition technique.
    Thuaksuban N; Nuntanaranont T; Suttapreyasri S; Boonyaphiphat P
    Biomed Mater Eng; 2015; 25(4):347-60. PubMed ID: 26407197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface immobilization of MEPE peptide onto HA/β-TCP ceramic particles enhances bone regeneration and remodeling.
    Acharya B; Chun SY; Kim SY; Moon C; Shin HI; Park EK
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):841-9. PubMed ID: 22278974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.
    Guo X; Zheng Q; Kulbatski I; Yuan Q; Yang S; Shao Z; Wang H; Xiao B; Pan Z; Tang S
    Biomed Mater; 2006 Sep; 1(3):93-9. PubMed ID: 18458388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.