These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24784792)

  • 21. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation.
    Arinzeh TL; Tran T; Mcalary J; Daculsi G
    Biomaterials; 2005 Jun; 26(17):3631-8. PubMed ID: 15621253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.
    Montjovent MO; Mark S; Mathieu L; Scaletta C; Scherberich A; Delabarde C; Zambelli PY; Bourban PE; Applegate LA; Pioletti DP
    Bone; 2008 Mar; 42(3):554-64. PubMed ID: 18178142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An exploratory study on the efficacy of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite for bone formation in a rat calvarial defect model.
    Shirakata Y; Nakamura T; Shinohara Y; Taniyama K; Sakoda K; Yoshimoto T; Noguchi K
    J Mater Sci Mater Med; 2014 Mar; 25(3):899-908. PubMed ID: 24363067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monolithic and assembled polymer-ceramic composites for bone regeneration.
    Nandakumar A; Cruz C; Mentink A; Tahmasebi Birgani Z; Moroni L; van Blitterswijk C; Habibovic P
    Acta Biomater; 2013 Mar; 9(3):5708-17. PubMed ID: 23142480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures.
    Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced bone formation in the vicinity of porous β-TCP scaffolds exhibiting slow release of collagen-derived tripeptides.
    Kamikura K; Minatoya T; Terada-Nakaishi M; Yamamoto S; Sakai Y; Furusawa T; Matsushima Y; Unuma H
    J Mater Sci Mater Med; 2017 Sep; 28(9):132. PubMed ID: 28744614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes.
    Kang HJ; Makkar P; Padalhin AR; Lee GH; Im SB; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110694. PubMed ID: 32204008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of three hydroxyapatite/β-tricalcium phosphate/collagen ceramic scaffolds: an in vivo study.
    Maté-Sánchez de Val JE; Mazón P; Guirado JLC; Ruiz RA; Ramírez Fernández MP; Negri B; Abboud M; De Aza PN
    J Biomed Mater Res A; 2014 Apr; 102(4):1037-46. PubMed ID: 23649980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of Bone Regeneration Using Adipose-Derived Stem Cells in Critical-Size Alveolar Ridge Defects: An Experimental Study in a Dog Model.
    Alvira-González J; Sánchez-Garcés MÀ; Cairó JR; Del Pozo MR; Sánchez CM; Gay-Escoda C
    Int J Oral Maxillofac Implants; 2016; 31(1):196-203. PubMed ID: 26800179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering.
    Xia Z; Yu X; Jiang X; Brody HD; Rowe DW; Wei M
    Acta Biomater; 2013 Jul; 9(7):7308-19. PubMed ID: 23567944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration.
    Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P
    Biomatter; 2014; 4():e27664. PubMed ID: 24441389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
    Denry I; Kuhn LT
    Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The primacy of octacalcium phosphate collagen composites in bone regeneration.
    Kamakura S; Sasaki K; Homma T; Honda Y; Anada T; Echigo S; Suzuki O
    J Biomed Mater Res A; 2007 Dec; 83(3):725-33. PubMed ID: 17559110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.