These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 24784919)

  • 1. Developing a conceptual model of possible benefits of condensed tannins for ruminant production.
    Tedeschi LO; Ramírez-Restrepo CA; Muir JP
    Animal; 2014 Jul; 8(7):1095-105. PubMed ID: 24784919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.
    Hristov AN; Oh J; Firkins JL; Dijkstra J; Kebreab E; Waghorn G; Makkar HP; Adesogan AT; Yang W; Lee C; Gerber PJ; Henderson B; Tricarico JM
    J Anim Sci; 2013 Nov; 91(11):5045-69. PubMed ID: 24045497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions.
    Knapp JR; Laur GL; Vadas PA; Weiss WP; Tricarico JM
    J Dairy Sci; 2014; 97(6):3231-61. PubMed ID: 24746124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of replacing alfalfa with panicled-tick clover or sericea lespedeza in corn-alfalfa-based substrates on in vitro ruminal methane production.
    Naumann HD; Lambert BD; Armstrong SA; Fonseca MA; Tedeschi LO; Muir JP; Ellersieck MR
    J Dairy Sci; 2015 Jun; 98(6):3980-7. PubMed ID: 25864051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation.
    Durmic Z; Moate PJ; Eckard R; Revell DK; Williams R; Vercoe PE
    J Sci Food Agric; 2014 Apr; 94(6):1191-6. PubMed ID: 24105682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants.
    Barry TN; McNabb WC
    Br J Nutr; 1999 Apr; 81(4):263-72. PubMed ID: 10999013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: Predicting ruminal methane inhibition by condensed tannins using nonlinear exponential decay regression analysis.
    Naumann HD; Tedeschi LO; Fonseca MA
    J Anim Sci; 2015 Nov; 93(11):5341-5. PubMed ID: 26641053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of condensed tannins from Desmodium intortum and Calliandra calothyrsus on protein and carbohydrate digestion in sheep and goats.
    Perez-Maldonado RA; Norton BW
    Br J Nutr; 1996 Oct; 76(4):515-33. PubMed ID: 8942360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: A review.
    Min BR; Solaiman S
    J Anim Physiol Anim Nutr (Berl); 2018 Oct; 102(5):1181-1193. PubMed ID: 30039875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanogenic potential of tropical feeds rich in hydrolyzable tannins1,2.
    Rira M; Morgavi DP; Genestoux L; Djibiri S; Sekhri I; Doreau M
    J Anim Sci; 2019 Jul; 97(7):2700-2710. PubMed ID: 31192352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of fenugreek in ruminant feed: implications for methane emissions and productivity.
    Zeng X; Chen Y; Li W; Liu S
    PeerJ; 2024; 12():e16842. PubMed ID: 38313019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of equations for predicting methane emissions from ruminants.
    Ramin M; Huhtanen P
    J Dairy Sci; 2013 Apr; 96(4):2476-2493. PubMed ID: 23403199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meta-analyses of effects of phytochemicals on digestibility and rumen fermentation characteristics associated with methanogenesis.
    Patra AK
    J Sci Food Agric; 2010 Dec; 90(15):2700-8. PubMed ID: 20740549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion.
    Martin C; Ferlay A; Mosoni P; Rochette Y; Chilliard Y; Doreau M
    J Dairy Sci; 2016 May; 99(5):3445-3456. PubMed ID: 26947299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition.
    Patra AK; Saxena J
    J Sci Food Agric; 2011 Jan; 91(1):24-37. PubMed ID: 20815041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics.
    Hatew B; Stringano E; Mueller-Harvey I; Hendriks WH; Carbonero CH; Smith LM; Pellikaan WF
    J Anim Physiol Anim Nutr (Berl); 2016 Apr; 100(2):348-60. PubMed ID: 25960083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production.
    Bhatta R; Saravanan M; Baruah L; Prasad CS
    J Appl Microbiol; 2015 Mar; 118(3):557-64. PubMed ID: 25495190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen.
    Patra AK; Saxena J
    Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: Comparative methane production in mammalian herbivores.
    Clauss M; Dittmann MT; Vendl C; Hagen KB; Frei S; Ortmann S; Müller DWH; Hammer S; Munn AJ; Schwarm A; Kreuzer M
    Animal; 2020 Mar; 14(S1):s113-s123. PubMed ID: 32024568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.