These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24784996)

  • 21. Growth of an ice disk: dependence of critical thickness for disk instability on supercooling of water.
    Yokoyama E; Sekerka RF; Furukawa Y
    J Phys Chem B; 2009 Apr; 113(14):4733-8. PubMed ID: 19275135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.
    Knight CA; Cheng CC; DeVries AL
    Biophys J; 1991 Feb; 59(2):409-18. PubMed ID: 2009357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal growth investigations of ice∕water interfaces from molecular dynamics simulations: Profile functions and average properties.
    Razul MS; Kusalik PG
    J Chem Phys; 2011 Jan; 134(1):014710. PubMed ID: 21219023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct ice patterns on solid surfaces with various wettabilities.
    Liu J; Zhu C; Liu K; Jiang Y; Song Y; Francisco JS; Zeng XC; Wang J
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11285-11290. PubMed ID: 29073045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice.
    Wierzbicki A; Taylor MS; Knight CA; Madura JD; Harrington JP; Sikes CS
    Biophys J; 1996 Jul; 71(1):8-18. PubMed ID: 8804585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice.
    Gavish M; Wang JL; Eisenstein M; Lahav M; Leiserowitz L
    Science; 1992 May; 256(5058):815-8. PubMed ID: 1589763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular recognition and binding of thermal hysteresis proteins to ice.
    Madura JD; Baran K; Wierzbicki A
    J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding anisotropic growth behavior of hexagonal ice on a molecular scale: a molecular dynamics simulation study.
    Seo M; Jang E; Kim K; Choi S; Kim JS
    J Chem Phys; 2012 Oct; 137(15):154503. PubMed ID: 23083177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry.
    Ramløv H; DeVries AL; Wilson PW
    Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS; Liu XY; Jia Z
    Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton Order toward the Surface of Ice I
    Nojima Y; Suzuki Y; Takahashi M; Yamaguchi S
    J Phys Chem Lett; 2017 Oct; 8(20):5031-5034. PubMed ID: 28968104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates.
    Holmstrup M; Bayley M; Ramløv H
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5716-20. PubMed ID: 11960026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics of ice nucleation in liquid water.
    Wang X; Wang S; Xu Q; Mi J
    J Phys Chem B; 2015 Jan; 119(4):1660-8. PubMed ID: 25546012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
    Strom CS; Liu XY; Jia Z
    J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pinch of salt is all it takes: chemistry at the frozen water surface.
    Kahan TF; Wren SN; Donaldson DJ
    Acc Chem Res; 2014 May; 47(5):1587-94. PubMed ID: 24785086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins.
    Wierzbicki A; Dalal P; Cheatham TE; Knickelbein JE; Haymet AD; Madura JD
    Biophys J; 2007 Sep; 93(5):1442-51. PubMed ID: 17526572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.