These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24785025)

  • 1. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.
    Jenke T; Cronenberg G; Burgdörfer J; Chizhova LA; Geltenbort P; Ivanov AN; Lauer T; Lins T; Rotter S; Saul H; Schmidt U; Abele H
    Phys Rev Lett; 2014 Apr; 112(15):151105. PubMed ID: 24785025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search for Axionlike Dark Matter with a Liquid-State Nuclear Spin Comagnetometer.
    Wu T; Blanchard JW; Centers GP; Figueroa NL; Garcon A; Graham PW; Kimball DFJ; Rajendran S; Stadnik YV; Sushkov AO; Wickenbrock A; Budker D
    Phys Rev Lett; 2019 May; 122(19):191302. PubMed ID: 31144940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly bound molecules as sensors of new gravitylike forces.
    Borkowski M; Buchachenko AA; Ciuryło R; Julienne PS; Yamada H; Kikuchi Y; Takasu Y; Takahashi Y
    Sci Rep; 2019 Oct; 9(1):14807. PubMed ID: 31616025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.
    Aybas D; Adam J; Blumenthal E; Gramolin AV; Johnson D; Kleyheeg A; Afach S; Blanchard JW; Centers GP; Garcon A; Engler M; Figueroa NL; Sendra MG; Wickenbrock A; Lawson M; Wang T; Wu T; Luo H; Mani H; Mauskopf P; Graham PW; Rajendran S; Kimball DFJ; Budker D; Sushkov AO
    Phys Rev Lett; 2021 Apr; 126(14):141802. PubMed ID: 33891466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultracold neutron detectors based on
    Jenke T; Cronenberg G; Filter H; Geltenbort P; Klein M; Lauer T; Mitsch K; Saul H; Seiler D; Stadler D; Thalhammer M; Abele H
    Nucl Instrum Methods Phys Res A; 2013 Dec; 732():1-8. PubMed ID: 25843998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New constraints on axion-like dark matter using a Floquet quantum detector.
    Bloch IM; Ronen G; Shaham R; Katz O; Volansky T; Katz O
    Sci Adv; 2022 Feb; 8(5):eabl8919. PubMed ID: 35119933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Search for Screened Interactions Associated with Dark Energy below the 100 μm Length Scale.
    Rider AD; Moore DC; Blakemore CP; Louis M; Lu M; Gratta G
    Phys Rev Lett; 2016 Sep; 117(10):101101. PubMed ID: 27636465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Limit on Axionlike Dark Matter Using Cold Neutrons.
    Schulthess I; Chanel E; Fratangelo A; Gottstein A; Gsponer A; Hodge Z; Pistillo C; Ries D; Soldner T; Thorne J; Piegsa FM
    Phys Rev Lett; 2022 Nov; 129(19):191801. PubMed ID: 36399752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory constraints on chameleon dark energy and power-law fields.
    Steffen JH; Upadhye A; Baumbaugh A; Chou AS; Mazur PO; Tomlin R; Weltman A; Wester W
    Phys Rev Lett; 2010 Dec; 105(26):261803. PubMed ID: 21231645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model selection for modified gravity.
    Kitching TD; Simpson F; Heavens AF; Taylor AN
    Philos Trans A Math Phys Eng Sci; 2011 Dec; 369(1957):5090-101. PubMed ID: 22084296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetron dark energy in laboratory experiments.
    Upadhye A
    Phys Rev Lett; 2013 Jan; 110(3):031301. PubMed ID: 23373910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASTROPHYSICS. Atom-interferometry constraints on dark energy.
    Hamilton P; Jaffe M; Haslinger P; Simmons Q; Müller H; Khoury J
    Science; 2015 Aug; 349(6250):849-51. PubMed ID: 26293958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planckian Interacting Massive Particles as Dark Matter.
    Garny M; Sandora M; Sloth MS
    Phys Rev Lett; 2016 Mar; 116(10):101302. PubMed ID: 27015472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phantom energy mediates a long-range repulsive force.
    Amendola L
    Phys Rev Lett; 2004 Oct; 93(18):181102. PubMed ID: 15525149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongly coupled chameleons and the neutronic quantum bouncer.
    Brax P; Pignol G
    Phys Rev Lett; 2011 Sep; 107(11):111301. PubMed ID: 22026655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity.
    Lucchesi DM; Peron R
    Phys Rev Lett; 2010 Dec; 105(23):231103. PubMed ID: 21231446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Einstein's theory of gravity and the problem of missing mass.
    Ferreira PG; Starkman GD
    Science; 2009 Nov; 326(5954):812-5. PubMed ID: 19892973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum stability of chameleon field theories.
    Upadhye A; Hu W; Khoury J
    Phys Rev Lett; 2012 Jul; 109(4):041301. PubMed ID: 23006073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chameleon fields: awaiting surprises for tests of gravity in space.
    Khoury J; Weltman A
    Phys Rev Lett; 2004 Oct; 93(17):171104. PubMed ID: 15525066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catastrophic consequences of kicking the chameleon.
    Erickcek AL; Barnaby N; Burrage C; Huang Z
    Phys Rev Lett; 2013 Apr; 110(17):171101. PubMed ID: 23679701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.