These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 24785115)
41. The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Abifadel M; Rabès JP; Jambart S; Halaby G; Gannagé-Yared MH; Sarkis A; Beaino G; Varret M; Salem N; Corbani S; Aydénian H; Junien C; Munnich A; Boileau C Hum Mutat; 2009 Jul; 30(7):E682-91. PubMed ID: 19319977 [TBL] [Abstract][Full Text] [Related]
42. Clinical features of familial hypercholesterolemia in Korea: Predictors of pathogenic mutations and coronary artery disease - A study supported by the Korean Society of Lipidology and Atherosclerosis. Shin DG; Han SM; Kim DI; Rhee MY; Lee BK; Ahn YK; Cho BR; Woo JT; Hur SH; Jeong JO; Jang Y; Lee JH; Lee SH Atherosclerosis; 2015 Nov; 243(1):53-8. PubMed ID: 26343872 [TBL] [Abstract][Full Text] [Related]
43. Prevalence of familial hypercholesterolemia in patients with premature myocardial infarction. Cui Y; Li S; Zhang F; Song J; Lee C; Wu M; Chen H Clin Cardiol; 2019 Mar; 42(3):385-390. PubMed ID: 30637778 [TBL] [Abstract][Full Text] [Related]
45. A DNA microarray for the detection of point mutations and copy number variation causing familial hypercholesterolemia in Europe. Stef MA; Palacios L; Olano-Martín E; Foe-A-Man C; van de Kerkhof L; Klaaijsen LN; Molano A; Schuurman EJ; Tejedor D; Defesche JC J Mol Diagn; 2013 May; 15(3):362-72. PubMed ID: 23537714 [TBL] [Abstract][Full Text] [Related]
46. The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Sharifi M; Walus-Miarka M; Idzior-Waluś B; Malecki MT; Sanak M; Whittall R; Li KW; Futema M; Humphries SE Metabolism; 2016 Mar; 65(3):48-53. PubMed ID: 26892515 [TBL] [Abstract][Full Text] [Related]
47. Spectrum of mutations of familial hypercholesterolemia in the 22 Arab countries. Alhababi D; Zayed H Atherosclerosis; 2018 Dec; 279():62-72. PubMed ID: 30415195 [TBL] [Abstract][Full Text] [Related]
48. Healthy individuals carrying the PCSK9 p.R46L variant and familial hypercholesterolemia patients carrying PCSK9 p.D374Y exhibit lower plasma concentrations of PCSK9. Humphries SE; Neely RD; Whittall RA; Troutt JS; Konrad RJ; Scartezini M; Li KW; Cooper JA; Acharya J; Neil A Clin Chem; 2009 Dec; 55(12):2153-61. PubMed ID: 19797716 [TBL] [Abstract][Full Text] [Related]
49. Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: Single center study. Pek SLT; Dissanayake S; Fong JCW; Lin MX; Chan EZL; Tang JI; Lee CW; Ong HY; Sum CF; Lim SC; Tavintharan S Atherosclerosis; 2018 Feb; 269():106-116. PubMed ID: 29353225 [TBL] [Abstract][Full Text] [Related]
50. Molecular testing for familial hypercholesterolaemia-associated mutations in a UK-based cohort: development of an NGS-based method and comparison with multiplex polymerase chain reaction and oligonucleotide arrays. Reiman A; Pandey S; Lloyd KL; Dyer N; Khan M; Crockard M; Latten MJ; Watson TL; Cree IA; Grammatopoulos DK Ann Clin Biochem; 2016 Nov; 53(6):654-662. PubMed ID: 26748104 [TBL] [Abstract][Full Text] [Related]
51. Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Hollants S; Redeker EJ; Matthijs G Clin Chem; 2012 Apr; 58(4):717-24. PubMed ID: 22294733 [TBL] [Abstract][Full Text] [Related]
52. Identification of New Genetic Determinants in Pediatric Patients with Familial Hypercholesterolemia Using a Custom NGS Panel. Rutkowska L; Sałacińska K; Salachna D; Matusik P; Pinkier I; Kępczyński Ł; Piotrowicz M; Starostecka E; Lewiński A; Gach A Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741760 [TBL] [Abstract][Full Text] [Related]
53. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction. Lee C; Cui Y; Song J; Li S; Zhang F; Wu M; Li L; Hu D; Chen H Lipids Health Dis; 2019 Apr; 18(1):95. PubMed ID: 30971288 [TBL] [Abstract][Full Text] [Related]
54. [Congenital disorders of lipoprotein metabolism]. März W; Grammer TB; Delgado G; Kleber ME Herz; 2017 Aug; 42(5):449-458. PubMed ID: 28555288 [TBL] [Abstract][Full Text] [Related]
55. Lipid phenotype and heritage pattern in families with genetic hypercholesterolemia not related to LDLR, APOB, PCSK9, or APOE. Jarauta E; Pérez-Ruiz MR; Pérez-Calahorra S; Mateo-Gallego R; Cenarro A; Cofán M; Ros E; Civeira F; Tejedor MT J Clin Lipidol; 2016; 10(6):1397-1405.e2. PubMed ID: 27919357 [TBL] [Abstract][Full Text] [Related]
56. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Rashid S; Tavori H; Brown PE; Linton MF; He J; Giunzioni I; Fazio S Circulation; 2014 Jul; 130(5):431-41. PubMed ID: 25070550 [TBL] [Abstract][Full Text] [Related]
57. Rare genetic causes of autosomal dominant or recessive hypercholesterolaemia. Soutar AK IUBMB Life; 2010 Feb; 62(2):125-31. PubMed ID: 20073037 [TBL] [Abstract][Full Text] [Related]
58. Homozygous familial hypercholesterolaemia: update on management. France M Paediatr Int Child Health; 2016 Nov; 36(4):243-247. PubMed ID: 27967828 [TBL] [Abstract][Full Text] [Related]
59. Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan. Mabuchi H; Nohara A; Noguchi T; Kobayashi J; Kawashiri MA; Tada H; Nakanishi C; Mori M; Yamagishi M; Inazu A; Koizumi J; Atherosclerosis; 2011 Feb; 214(2):404-7. PubMed ID: 21146822 [TBL] [Abstract][Full Text] [Related]
60. Proprotein convertase subtilisin/kexin 9 V4I variant with LDLR mutations modifies the phenotype of familial hypercholesterolemia. Ohta N; Hori M; Takahashi A; Ogura M; Makino H; Tamanaha T; Fujiyama H; Miyamoto Y; Harada-Shiba M J Clin Lipidol; 2016; 10(3):547-555.e5. PubMed ID: 27206942 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]