These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24785461)

  • 1. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease.
    Khalid S; Paul S
    Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico design of small peptide-based Hsp90 inhibitor: a novel anticancer agent.
    Gupta UK; Mahanta S; Paul S
    Med Hypotheses; 2013 Nov; 81(5):853-61. PubMed ID: 24018284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting silibinin as a novobiocin-like Hsp90 C-terminal inhibitor: Computational modeling and experimental validation.
    Cuyàs E; Verdura S; Micol V; Joven J; Bosch-Barrera J; Encinar JA; Menendez JA
    Food Chem Toxicol; 2019 Oct; 132():110645. PubMed ID: 31254591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.
    Goode KM; Petrov DP; Vickman RE; Crist SA; Pascuzzi PE; Ratliff TL; Davisson VJ; Hazbun TR
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1992-2006. PubMed ID: 28495207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico identification and analysis of the binding site for aminocoumarin type inhibitors in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2018 Sep; 84():215-235. PubMed ID: 30031951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of docking-based comparative intermolecular contacts analysis to validate Hsp90α docking studies and subsequent in silico screening for inhibitors.
    Al-Sha'er MA; Taha MO
    J Mol Model; 2012 Nov; 18(11):4843-63. PubMed ID: 22707278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.
    Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM
    J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and energetic insight into the interactions between the benzolactam inhibitors and tumor marker HSP90α.
    Guo XY; Qi RP; Xu DG; Liu XH; Yang X
    Comput Biol Chem; 2015 Oct; 58():182-91. PubMed ID: 26256798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90.
    Song X; Zhao Z; Qi X; Tang S; Wang Q; Zhu T; Gu Q; Liu M; Li J
    Oncotarget; 2015 Mar; 6(7):5263-74. PubMed ID: 25742791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target.
    Peng S; Woodruff J; Pathak PK; Matts RL; Deng J
    Acta Crystallogr D Struct Biol; 2022 May; 78(Pt 5):571-585. PubMed ID: 35503206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of pyrimidinyl acyl thioureas as novel Hsp90 inhibitors in invasive ductal breast cancer and its bone metastasis.
    Koca İ; Özgür A; Er M; Gümüş M; Açikalin Coşkun K; Tutar Y
    Eur J Med Chem; 2016 Oct; 122():280-290. PubMed ID: 27376491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells.
    Liu W; Vielhauer GA; Holzbeierlein JM; Zhao H; Ghosh S; Brown D; Lee E; Blagg BS
    Mol Pharmacol; 2015 Jul; 88(1):121-30. PubMed ID: 25939977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain.
    Dai J; Chen A; Zhu M; Qi X; Tang W; Liu M; Li D; Gu Q; Li J
    Biochem Pharmacol; 2019 May; 163():404-415. PubMed ID: 30857829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inside the Hsp90 inhibitors binding mode through induced fit docking.
    Lauria A; Ippolito M; Almerico AM
    J Mol Graph Model; 2009 Feb; 27(6):712-22. PubMed ID: 19084447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion.
    Yang Y; Rao R; Shen J; Tang Y; Fiskus W; Nechtman J; Atadja P; Bhalla K
    Cancer Res; 2008 Jun; 68(12):4833-42. PubMed ID: 18559531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 6-Alkylsalicylic acid analogues inhibit in vitro ATPase activity of heat shock protein 90.
    Wu CZ; Moon AN; Choi O; Kang SY; Lee JJ; Lee D; Hwang BY; Kim YH; Lee HS; Hong YS
    Arch Pharm Res; 2010 Dec; 33(12):1997-2001. PubMed ID: 21191765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.