BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 24785686)

  • 1. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells.
    Picard F; Cadoret JC; Audit B; Arneodo A; Alberti A; Battail C; Duret L; Prioleau MN
    PLoS Genet; 2014 May; 10(5):e1004282. PubMed ID: 24785686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).
    Langley AR; Gräf S; Smith JC; Krude T
    Nucleic Acids Res; 2016 Dec; 44(21):10230-10247. PubMed ID: 27587586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins.
    Mesner LD; Valsakumar V; Cieslik M; Pickin R; Hamlin JL; Bekiranov S
    Genome Res; 2013 Nov; 23(11):1774-88. PubMed ID: 23861383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal association of ORCA/LRWD1 to late-firing origins during G1 dictates heterochromatin replication and organization.
    Wang Y; Khan A; Marks AB; Smith OK; Giri S; Lin YC; Creager R; MacAlpine DM; Prasanth KV; Aladjem MI; Prasanth SG
    Nucleic Acids Res; 2017 Mar; 45(5):2490-2502. PubMed ID: 27924004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human genome replication proceeds through four chromatin states.
    Julienne H; Zoufir A; Audit B; Arneodo A
    PLoS Comput Biol; 2013; 9(10):e1003233. PubMed ID: 24130466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA replication and transcription programs respond to the same chromatin cues.
    Lubelsky Y; Prinz JA; DeNapoli L; Li Y; Belsky JA; MacAlpine DM
    Genome Res; 2014 Jul; 24(7):1102-14. PubMed ID: 24985913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells.
    Zhao PA; Sasaki T; Gilbert DM
    Genome Biol; 2020 Mar; 21(1):76. PubMed ID: 32209126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae.
    Soriano I; Morafraile EC; Vázquez E; Antequera F; Segurado M
    BMC Genomics; 2014 Sep; 15(1):791. PubMed ID: 25218085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data.
    Luo H; Li J; Eshaghi M; Liu J; Karuturi RK
    BMC Bioinformatics; 2010 May; 11():247. PubMed ID: 20462459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic stem cell specific "master" replication origins at the heart of the loss of pluripotency.
    Julienne H; Audit B; Arneodo A
    PLoS Comput Biol; 2015 Feb; 11(2):e1003969. PubMed ID: 25658386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct epigenetic features of differentiation-regulated replication origins.
    Smith OK; Kim R; Fu H; Martin MM; Lin CM; Utani K; Zhang Y; Marks AB; Lalande M; Chamberlain S; Libbrecht MW; Bouhassira EE; Ryan MC; Noble WS; Aladjem MI
    Epigenetics Chromatin; 2016; 9():18. PubMed ID: 27168766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activities of eukaryotic replication origins in chromatin.
    Weinreich M; Palacios DeBeer MA; Fox CA
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):142-57. PubMed ID: 15020055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types.
    Ryba T; Hiratani I; Lu J; Itoh M; Kulik M; Zhang J; Schulz TC; Robins AJ; Dalton S; Gilbert DM
    Genome Res; 2010 Jun; 20(6):761-70. PubMed ID: 20430782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal regulation of DNA replication in the human genome and its association with genomic instability and disease.
    Watanabe Y; Maekawa M
    Curr Med Chem; 2010; 17(3):222-33. PubMed ID: 20214565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation.
    Rampakakis E; Di Paola D; Chan MK; Zannis-Hadjopoulos M
    J Cell Biochem; 2009 Oct; 108(2):400-7. PubMed ID: 19585526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictable dynamic program of timing of DNA replication in human cells.
    Desprat R; Thierry-Mieg D; Lailler N; Lajugie J; Schildkraut C; Thierry-Mieg J; Bouhassira EE
    Genome Res; 2009 Dec; 19(12):2288-99. PubMed ID: 19767418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Replication Origins.
    Marks AB; Fu H; Aladjem MI
    Adv Exp Med Biol; 2017; 1042():43-59. PubMed ID: 29357052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChECing out Rif1 action in freely cycling cells.
    Hafner L; Shore D; Mattarocci S
    Curr Genet; 2019 Apr; 65(2):429-434. PubMed ID: 30456647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superresolution imaging reveals spatiotemporal propagation of human replication foci mediated by CTCF-organized chromatin structures.
    Su QP; Zhao ZW; Meng L; Ding M; Zhang W; Li Y; Liu M; Li R; Gao YQ; Xie XS; Sun Y
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15036-15046. PubMed ID: 32541019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.