These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24786074)

  • 1. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation.
    Chen G; Zhao Y; Fu G; Duchesne PN; Gu L; Zheng Y; Weng X; Chen M; Zhang P; Pao CW; Lee JF; Zheng N
    Science; 2014 May; 344(6183):495-9. PubMed ID: 24786074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for CO oxidation on Fe(iii)-OH-Pt interface: a DFT study.
    Zhao Y; Chen G; Zheng N; Fu G
    Faraday Discuss; 2014; 176():381-92. PubMed ID: 25430777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial sites in platinum-hydroxide-cobalt hybrid nanostructures for promoting CO oxidation activity.
    He W; Huang L; Liu C; Wang S; Long Z; Hu F; Sun Z
    Nanoscale; 2021 Feb; 13(4):2593-2600. PubMed ID: 33480944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO oxidation at the perimeters of an FeO/Pt(111) interface and how water promotes the activity: a first-principles study.
    Gu XK; Ouyang R; Sun D; Su HY; Li WX
    ChemSusChem; 2012 May; 5(5):871-8. PubMed ID: 22162485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H
    Cao L; Liu W; Luo Q; Yin R; Wang B; Weissenrieder J; Soldemo M; Yan H; Lin Y; Sun Z; Ma C; Zhang W; Chen S; Wang H; Guan Q; Yao T; Wei S; Yang J; Lu J
    Nature; 2019 Jan; 565(7741):631-635. PubMed ID: 30700869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction.
    Lai FJ; Chou HL; Sarma LS; Wang DY; Lin YC; Lee JF; Hwang BJ; Chen CC
    Nanoscale; 2010 Apr; 2(4):573-81. PubMed ID: 20644761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica.
    Fukuoka A; Kimura J; Oshio T; Sakamoto Y; Ichikawa M
    J Am Chem Soc; 2007 Aug; 129(33):10120-5. PubMed ID: 17663550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported monodisperse Pt nanoparticles from [Pt3(CO)3(μ2-CO)3]5(2-) clusters for investigating support-Pt interface effect in catalysis.
    Chen G; Yang H; Wu B; Zheng Y; Zheng N
    Dalton Trans; 2013 Sep; 42(35):12699-705. PubMed ID: 23732536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Fe
    Han Y; Li P; Liu J; Wu S; Ye Y; Tian Z; Liang C
    Sci Rep; 2018 Jan; 8(1):1359. PubMed ID: 29358720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Platinum Modulates Redox Properties and 5-Hydroxymethylfurfural Adsorption Kinetics of Ni(OH)
    Zhou B; Li Y; Zou Y; Chen W; Zhou W; Song M; Wu Y; Lu Y; Liu J; Wang Y; Wang S
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22908-22914. PubMed ID: 34405508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP; Ramaprabhu S
    Nanoscale; 2013 Jun; 5(11):5109-18. PubMed ID: 23644681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/oxide nanocatalysts.
    Xu L; Ma Y; Zhang Y; Jiang Z; Huang W
    J Am Chem Soc; 2009 Nov; 131(45):16366-7. PubMed ID: 19860417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the Cost and Preserving the Reactivity in Noble-Metal-Based Catalysts: Oxidation of CO by Pt and Al-Pt Alloy Clusters Supported on Graphene.
    Koizumi K; Nobusada K; Boero M
    Chemistry; 2016 Apr; 22(15):5181-8. PubMed ID: 26878836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.