BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24786100)

  • 21. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation.
    He X; Young SH; Schwegler-Berry D; Chisholm WP; Fernback JE; Ma Q
    Chem Res Toxicol; 2011 Dec; 24(12):2237-48. PubMed ID: 22081859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.
    Lam CW; James JT; McCluskey R; Arepalli S; Hunter RL
    Crit Rev Toxicol; 2006 Mar; 36(3):189-217. PubMed ID: 16686422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts.
    Hussain S; Sangtian S; Anderson SM; Snyder RJ; Marshburn JD; Rice AB; Bonner JC; Garantziotis S
    Part Fibre Toxicol; 2014 Jun; 11():28. PubMed ID: 24915862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes.
    Ong LC; Tan YF; Tan BS; Chung FF; Cheong SK; Leong CO
    Toxicol Appl Pharmacol; 2017 Aug; 329():347-357. PubMed ID: 28673683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STAT1-dependent and -independent pulmonary allergic and fibrogenic responses in mice after exposure to tangled versus rod-like multi-walled carbon nanotubes.
    Duke KS; Taylor-Just AJ; Ihrie MD; Shipkowski KA; Thompson EA; Dandley EC; Parsons GN; Bonner JC
    Part Fibre Toxicol; 2017 Jul; 14(1):26. PubMed ID: 28716119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes.
    Zhang X; Hu X; Zhang Y; Liu B; Pan H; Liu Z; Yao Z; Zhu Q; Wu C; Shen T
    J Nanobiotechnology; 2023 Feb; 21(1):69. PubMed ID: 36849924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen.
    Ponticos M; Holmes AM; Shi-wen X; Leoni P; Khan K; Rajkumar VS; Hoyles RK; Bou-Gharios G; Black CM; Denton CP; Abraham DJ; Leask A; Lindahl GE
    Arthritis Rheum; 2009 Jul; 60(7):2142-55. PubMed ID: 19565505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of stemlike cells with fibrogenic properties by carbon nanotubes and its role in fibrogenesis.
    Luanpitpong S; Wang L; Manke A; Martin KH; Ammer AG; Castranova V; Yang Y; Rojansakul Y
    Nano Lett; 2014 Jun; 14(6):3110-6. PubMed ID: 24873662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway.
    Wang P; Nie X; Wang Y; Li Y; Ge C; Zhang L; Wang L; Bai R; Chen Z; Zhao Y; Chen C
    Small; 2013 Nov; 9(22):3799-811. PubMed ID: 23650105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice.
    Teeguarden JG; Webb-Robertson BJ; Waters KM; Murray AR; Kisin ER; Varnum SM; Jacobs JM; Pounds JG; Zanger RC; Shvedova AA
    Toxicol Sci; 2011 Mar; 120(1):123-35. PubMed ID: 21135415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling.
    Oruqaj G; Karnati S; Vijayan V; Kotarkonda LK; Boateng E; Zhang W; Ruppert C; Günther A; Shi W; Baumgart-Vogt E
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):E2048-57. PubMed ID: 25848047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-beta in response to fibrogenic stimuli.
    Zhou Y; Hagood JS; Murphy-Ullrich JE
    Am J Pathol; 2004 Aug; 165(2):659-69. PubMed ID: 15277239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice.
    Shvedova AA; Kisin ER; Mercer R; Murray AR; Johnson VJ; Potapovich AI; Tyurina YY; Gorelik O; Arepalli S; Schwegler-Berry D; Hubbs AF; Antonini J; Evans DE; Ku BK; Ramsey D; Maynard A; Kagan VE; Castranova V; Baron P
    Am J Physiol Lung Cell Mol Physiol; 2005 Nov; 289(5):L698-708. PubMed ID: 15951334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1.
    Khaliullin TO; Kisin ER; Murray AR; Yanamala N; Shurin MR; Gutkin DW; Fatkhutdinova LM; Kagan VE; Shvedova AA
    Exp Lung Res; 2017 Oct; 43(8):311-326. PubMed ID: 29140132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes.
    Dong J; Porter DW; Batteli LA; Wolfarth MG; Richardson DL; Ma Q
    Arch Toxicol; 2015 Apr; 89(4):621-33. PubMed ID: 25510677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice.
    Park EJ; Roh J; Kim SN; Kang MS; Han YA; Kim Y; Hong JT; Choi K
    Arch Toxicol; 2011 Sep; 85(9):1121-31. PubMed ID: 21472445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.
    Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV
    Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective.
    Duke KS; Bonner JC
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 May; 10(3):e1498. PubMed ID: 28984415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 18β-Glycyrrhetinic acid monoglucuronide (GAMG) alleviates single-walled carbon nanotubes (SWCNT)-induced lung inflammation and fibrosis in mice through PI3K/AKT/NF-κB signaling pathway.
    Zhang XL; Li B; Zhang X; Zhu J; Xie Y; Shen T; Tang W; Zhang J
    Ecotoxicol Environ Saf; 2022 Sep; 242():113858. PubMed ID: 35809393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lysocardiolipin acyltransferase regulates TGF-β mediated lung fibroblast differentiation.
    Huang LS; Jiang P; Feghali-Bostwick C; Reddy SP; Garcia JGN; Natarajan V
    Free Radic Biol Med; 2017 Nov; 112():162-173. PubMed ID: 28751023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.