BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 2478633)

  • 1. Adaptive mutations alter antibody structure and dynamics during affinity maturation.
    Adhikary R; Yu W; Oda M; Walker RC; Chen T; Stanfield RL; Wilson IA; Zimmermann J; Romesberg FE
    Biochemistry; 2015 Mar; 54(11):2085-93. PubMed ID: 25756188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. B-1b Cells Have Unique Functional Traits Compared to B-1a Cells at Homeostasis and in Aged Hyperlipidemic Mice With Atherosclerosis.
    Srikakulapu P; Pattarabanjird T; Upadhye A; Bontha SV; Osinski V; Marshall MA; Garmey J; Deroissart J; Prohaska TA; Witztum JL; Binder CJ; Holodick NE; Rothstein TL; McNamara CA
    Front Immunol; 2022; 13():909475. PubMed ID: 35935999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine.
    Mukerji R; Mirza S; Roche AM; Widener RW; Croney CM; Rhee DK; Weiser JN; Szalai AJ; Briles DE
    J Immunol; 2012 Dec; 189(11):5327-35. PubMed ID: 23105137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Conversion-Like Events in the Diversification of Human Rearranged IGHV3-23*01 Gene Sequences.
    Duvvuri B; Wu GE
    Front Immunol; 2012; 3():158. PubMed ID: 22715339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization and MHCII-dependent immunological properties of the zwitterionic O-chain antigen of Morganella morganii.
    Young NM; Kreisman LS; Stupak J; MacLean LL; Cobb BA; Richards JC
    Glycobiology; 2011 Oct; 21(10):1266-76. PubMed ID: 21321054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis of repertoire shift in an immune response to phosphocholine.
    Brown M; Schumacher MA; Wiens GD; Brennan RG; Rittenberg MB
    J Exp Med; 2000 Jun; 191(12):2101-12. PubMed ID: 10859335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-co-glycolide) microspheres.
    Allaoui-Attarki K; Pecquet S; Fattal E; Trollé S; Chachaty E; Couvreur P; Andremont A
    Infect Immun; 1997 Mar; 65(3):853-7. PubMed ID: 9038287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement and destruction of antibody function by somatic mutation: unequal occurrence is controlled by V gene combinatorial associations.
    Chen C; Roberts VA; Stevens S; Brown M; Stenzel-Poore MP; Rittenberg MB
    EMBO J; 1995 Jun; 14(12):2784-94. PubMed ID: 7796805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facultative role of germinal centers and T cells in the somatic diversification of IgVH genes.
    Miller C; Stedra J; Kelsoe G; Cerny J
    J Exp Med; 1995 Apr; 181(4):1319-31. PubMed ID: 7535332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New nucleotide sequence data on the EMBL File Server.
    Nucleic Acids Res; 1990 May; 18(9):2839-49. PubMed ID: 2339078
    [No Abstract]   [Full Text] [Related]  

  • 11. Different epitope structures select distinct mutant forms of an antibody variable region for expression during the immune response.
    Fish S; Fleming M; Sharon J; Manser T
    J Exp Med; 1991 Mar; 173(3):665-72. PubMed ID: 1705280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and analysis of random point mutations in an antibody CDR2 sequence: many mutated antibodies lose their ability to bind antigen.
    Chen C; Roberts VA; Rittenberg MB
    J Exp Med; 1992 Sep; 176(3):855-66. PubMed ID: 1512548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural occurrence and origin of somatically mutated memory B cells in mice.
    Schittek B; Rajewsky K
    J Exp Med; 1992 Aug; 176(2):427-38. PubMed ID: 1500855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen binding and idiotype analysis of antibodies obtained after electroporation of heavy and light chain genes encoding phosphocholine-specific antibodies: a model for T15-idiotype dominance.
    Kenny JJ; Moratz CM; Guelde G; O'Connell CD; George J; Dell C; Penner SJ; Weber JS; Berry J; Claflin JL
    J Exp Med; 1992 Dec; 176(6):1637-43. PubMed ID: 1460422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein.
    Kohrman DC; Imperiale MJ
    J Virol; 1992 Mar; 66(3):1752-60. PubMed ID: 1310776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of mutations and selection in antibodies to the phosphocholine-specific determinant in Proteus morganii.
    Claflin JL; George J; Dell C; Berry J
    J Immunol; 1989 Nov; 143(9):3054-63. PubMed ID: 2478633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic evolution of diversity among anti-phosphocholine antibodies induced with Proteus morganii.
    Claflin JL; Berry J; Flaherty D; Dunnick W
    J Immunol; 1987 May; 138(9):3060-8. PubMed ID: 3106498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of the phosphocholine-specific response to Proteus morganii. B cell transfectants expressing unmutated VH/VL can respond to stimulation by P. morganii antigen.
    Penner SJ; George J; Claflin L
    J Immunol; 1995 Sep; 155(5):2387-95. PubMed ID: 7544373
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.