BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24786463)

  • 1. A direct link between the global regulator PhoP and the Csr regulon in Y. pseudotuberculosis through the small regulatory RNA CsrC.
    Nuss AM; Schuster F; Kathrin Heroven A; Heine W; Pisano F; Dersch P
    RNA Biol; 2014; 11(5):580-93. PubMed ID: 24786463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM.
    Heroven AK; Böhme K; Rohde M; Dersch P
    Mol Microbiol; 2008 Jun; 68(5):1179-95. PubMed ID: 18430141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis.
    Heroven AK; Dersch P
    Mol Microbiol; 2006 Dec; 62(5):1469-83. PubMed ID: 17074075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence.
    Grabenstein JP; Marceau M; Pujol C; Simonet M; Bliska JB
    Infect Immun; 2004 Sep; 72(9):4973-84. PubMed ID: 15321989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crp induces switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and links nutritional status to virulence.
    Heroven AK; Sest M; Pisano F; Scheb-Wetzel M; Steinmann R; Böhme K; Klein J; Münch R; Schomburg D; Dersch P
    Front Cell Infect Microbiol; 2012; 2():158. PubMed ID: 23251905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis.
    Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P
    Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence.
    Koo JT; Alleyne TM; Schiano CA; Jafari N; Lathem WW
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):E709-17. PubMed ID: 21876162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of transcriptional regulation of rovA by PhoP and RovA in Yersinia pestis.
    Zhang Y; Gao H; Wang L; Xiao X; Tan Y; Guo Z; Zhou D; Yang R
    PLoS One; 2011; 6(9):e25484. PubMed ID: 21966533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of small RNAs in Yersinia pestis.
    Beauregard A; Smith EA; Petrone BL; Singh N; Karch C; McDonough KA; Wade JT
    RNA Biol; 2013 Mar; 10(3):397-405. PubMed ID: 23324607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence.
    Heroven AK; Böhme K; Dersch P
    RNA Biol; 2012 Apr; 9(4):379-91. PubMed ID: 22336760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence.
    Marceau M; Sebbane F; Ewann F; Collyn F; Lindner B; Campos MA; Bengoechea JA; Simonet M
    Microbiology (Reading); 2004 Dec; 150(Pt 12):3947-57. PubMed ID: 15583148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylated CpxR restricts production of the RovA global regulator in Yersinia pseudotuberculosis.
    Liu J; Obi IR; Thanikkal EJ; Kieselbach T; Francis MS
    PLoS One; 2011; 6(8):e23314. PubMed ID: 21876746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route.
    Pisano F; Heine W; Rosenheinrich M; Schweer J; Nuss AM; Dersch P
    PLoS One; 2014; 9(7):e103541. PubMed ID: 25075520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Scale Analysis Reveals IscR Directly and Indirectly Regulates Virulence Factor Genes in Pathogenic
    Balderas D; Mettert E; Lam HN; Banerjee R; Gverzdys T; Alvarez P; Saarunya G; Tanner N; Zoubedi A; Wei Y; Kiley PJ; Auerbuch V
    mBio; 2021 Jun; 12(3):e0063321. PubMed ID: 34060331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pyruvate-tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis.
    Bücker R; Heroven AK; Becker J; Dersch P; Wittmann C
    J Biol Chem; 2014 Oct; 289(43):30114-32. PubMed ID: 25164818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM.
    Thanikkal EJ; Gahlot DK; Liu J; Fredriksson Sundbom M; Gurung JM; Ruuth K; Francis MK; Obi IR; Thompson KM; Chen S; Dersch P; Francis MS
    Virulence; 2019 Dec; 10(1):37-57. PubMed ID: 30518290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis.
    Heroven AK; Nagel G; Tran HJ; Parr S; Dersch P
    Mol Microbiol; 2004 Aug; 53(3):871-88. PubMed ID: 15255899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms.
    Sun YC; Koumoutsi A; Darby C
    FEMS Microbiol Lett; 2009 Jan; 290(1):85-90. PubMed ID: 19025559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae.
    Göpel Y; Lüttmann D; Heroven AK; Reichenbach B; Dersch P; Görke B
    Nucleic Acids Res; 2011 Mar; 39(4):1294-309. PubMed ID: 20965974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of RovA, a transcriptional regulator of Yersinia pseudotuberculosis virulence that acts through antirepression and direct transcriptional activation.
    Tran HJ; Heroven AK; Winkler L; Spreter T; Beatrix B; Dersch P
    J Biol Chem; 2005 Dec; 280(51):42423-32. PubMed ID: 16257976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.