BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24786493)

  • 1. β sheets not required: combined experimental and computational studies of self-assembly and gelation of the ester-containing analogue of an Fmoc-dipeptide hydrogelator.
    Eckes KM; Mu X; Ruehle MA; Ren P; Suggs LJ
    Langmuir; 2014 May; 30(18):5287-96. PubMed ID: 24786493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and computational studies reveal an alternative supramolecular structure for fmoc-dipeptide self-assembly.
    Mu X; Eckes KM; Nguyen MM; Suggs LJ; Ren P
    Biomacromolecules; 2012 Nov; 13(11):3562-71. PubMed ID: 23020140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.
    Rajbhandary A; Nilsson BL
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27696352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release.
    Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T
    J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the self-assembly and cytocompatibility of conjugates of Fmoc (9-fluorenylmethoxycarbonyl) with hydrophobic, aromatic, or charged amino acids.
    Castelletto V; de Mello L; da Silva ER; Seitsonen J; Hamley IW
    J Pept Sci; 2024 Jun; 30(6):e3571. PubMed ID: 38374800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHARMM force field parameterization protocol for self-assembling peptide amphiphiles: the Fmoc moiety.
    Ramos Sasselli I; Ulijn RV; Tuttle T
    Phys Chem Chem Phys; 2016 Feb; 18(6):4659-67. PubMed ID: 26794129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Simulations of Self-Assembling Peptides: Surface and Core Hydrophobicity Determine Fibril Stability and Amyloid Aggregation.
    Iscen A; Kaygisiz K; Synatschke CV; Weil T; Kremer K
    Biomacromolecules; 2024 May; 25(5):3063-3075. PubMed ID: 38652055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Side Chains in β-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides.
    Tobias F; Keiderling TA
    Langmuir; 2016 May; 32(18):4653-61. PubMed ID: 27099990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual Two-Step Assembly of a Minimalistic Dipeptide-Based Functional Hypergelator.
    Chakraborty P; Tang Y; Yamamoto T; Yao Y; Guterman T; Zilberzwige-Tal S; Adadi N; Ji W; Dvir T; Ramamoorthy A; Wei G; Gazit E
    Adv Mater; 2020 Mar; 32(9):e1906043. PubMed ID: 31984580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent.
    Castelletto V; Cheng G; Greenland BW; Hamley IW; Harris PJ
    Langmuir; 2011 Mar; 27(6):2980-8. PubMed ID: 21338121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
    Zanuy D; Poater J; Solà M; Hamley IW; Alemán C
    Phys Chem Chem Phys; 2016 Jan; 18(2):1265-78. PubMed ID: 26659906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the Functional Scope of the Fmoc-Diphenylalanine Hydrogelator by Introducing a Rigidifying and Chemically Active Urea Backbone Modification.
    Basavalingappa V; Guterman T; Tang Y; Nir S; Lei J; Chakraborty P; Schnaider L; Reches M; Wei G; Gazit E
    Adv Sci (Weinh); 2019 Jun; 6(12):1900218. PubMed ID: 31316891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces.
    Nikolic A; Baud S; Rauscher S; Pomès R
    Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.
    Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW
    Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Tetraphenylalanine Peptides.
    Mayans E; Ballano G; Casanovas J; Díaz A; Pérez-Madrigal MM; Estrany F; Puiggalí J; Cativiela C; Alemán C
    Chemistry; 2015 Nov; 21(47):16895-905. PubMed ID: 26419936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the role of backbone hydrogen bonding in beta-amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions.
    Gordon DJ; Meredith SC
    Biochemistry; 2003 Jan; 42(2):475-85. PubMed ID: 12525175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics.
    Banerji B; Chatterjee M; Pal U; Maiti NC
    J Phys Chem B; 2017 Jul; 121(26):6367-6379. PubMed ID: 28593765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation and intermolecular interactions of SA2 peptides self-assembled into vesicles.
    van Hell AJ; Klymchenko A; Burgers PP; Moret EE; Jiskoot W; Hennink WE; Crommelin DJ; Mastrobattista E
    J Phys Chem B; 2010 Sep; 114(34):11046-52. PubMed ID: 20687533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.