BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24786692)

  • 1. In-silico analyses of sesquiterpene-related compounds on selected Leishmania enzyme-based targets.
    Bernal FA; Coy-Barrera E
    Molecules; 2014 Apr; 19(5):5550-69. PubMed ID: 24786692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism underlying antileishmanial effect of oxabicyclo[3.3.1]nonanones: inhibition of key redox enzymes of the pathogen.
    Saudagar P; Saha P; Saikia AK; Dubey VK
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):569-77. PubMed ID: 24002022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods.
    Boniface PK; Sano CM; Elizabeth FI
    Curr Drug Targets; 2020; 21(7):681-712. PubMed ID: 32003668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.
    Romero AH; López SE
    J Mol Graph Model; 2017 Sep; 76():313-329. PubMed ID: 28763686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.
    Nare B; Luba J; Hardy LW; Beverley S
    Parasitology; 1997; 114 Suppl():S101-10. PubMed ID: 9309772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids.
    Benítez D; Medeiros A; Fiestas L; Panozzo-Zenere EA; Maiwald F; Prousis KC; Roussaki M; Calogeropoulou T; Detsi A; Jaeger T; Šarlauskas J; Peterlin Mašič L; Kunick C; Labadie GR; Flohé L; Comini MA
    PLoS Negl Trop Dis; 2016 Apr; 10(4):e0004617. PubMed ID: 27070550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways.
    Hardy LW; Matthews W; Nare B; Beverley SM
    Exp Parasitol; 1997 Nov; 87(3):157-69. PubMed ID: 9371081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery.
    das Neves GM; Kagami LP; Gonçalves IL; Eifler-Lima VL
    Future Med Chem; 2019 Aug; 11(16):2107-2130. PubMed ID: 31370699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents.
    Taha M; Ismail NH; Imran S; Anouar EH; Selvaraj M; Jamil W; Ali M; Kashif SM; Rahim F; Khan KM; Adenan MI
    Eur J Med Chem; 2017 Jan; 126():1021-1033. PubMed ID: 28012342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Kaurane-Type Diterpenes as Inhibitors of Leishmania Pteridine Reductase I.
    Herrera-Acevedo C; Flores-Gaspar A; Scotti L; Mendonça-Junior FJB; Scotti MT; Coy-Barrera E
    Molecules; 2021 May; 26(11):. PubMed ID: 34063939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.
    Zimmermann S; Oufir M; Leroux A; Krauth-Siegel RL; Becker K; Kaiser M; Brun R; Hamburger M; Adams M
    Bioorg Med Chem; 2013 Nov; 21(22):7202-9. PubMed ID: 24080104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies on potential small molecule inhibitors of
    Boakye A; Gasu EN; Mensah JO; Borquaye LS
    J Biomol Struct Dyn; 2023; 41(21):12128-12141. PubMed ID: 36632757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights about resveratrol analogs against trypanothione reductase of
    da Silva AD; Dos Santos JA; Machado PA; Alves LA; Laque LC; de Souza VC; Coimbra ES; Capriles PVSZ
    J Biomol Struct Dyn; 2019 Jul; 37(11):2960-2969. PubMed ID: 30058445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the inhibitory activity of Withaferin-A against Pteridine reductase-1 of L. donovani.
    Chandrasekaran S; Veronica J; Gundampati RK; Sundar S; Maurya R
    J Enzyme Inhib Med Chem; 2016 Dec; 31(6):1029-37. PubMed ID: 26406482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-silico Leishmania target selectivity of antiparasitic terpenoids.
    Ogungbe IV; Setzer WN
    Molecules; 2013 Jul; 18(7):7761-847. PubMed ID: 23823876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis.
    Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K
    Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors.
    Corona P; Gibellini F; Cavalli A; Saxena P; Carta A; Loriga M; Luciani R; Paglietti G; Guerrieri D; Nerini E; Gupta S; Hannaert V; Michels PA; Ferrari S; Costi PM
    J Med Chem; 2012 Oct; 55(19):8318-29. PubMed ID: 22946585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiadiazine-thiones as inhibitors of leishmania pteridine reductase (PTR1) target: investigations and in silico approach.
    Shtaiwi A
    J Biomol Struct Dyn; 2023 Aug; ():1-10. PubMed ID: 37578348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.