These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24786963)

  • 1. Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces.
    Kong B; Tang J; Selomulya C; Li W; Wei J; Fang Y; Wang Y; Zheng G; Zhao D
    J Am Chem Soc; 2014 May; 136(19):6822-5. PubMed ID: 24786963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous Fe2O3-CdS Heterostructures for Real-Time Photoelectrochemical Dynamic Probing of Cu(2+).
    Tang J; Li J; Zhang Y; Kong B; Yiliguma ; Wang Y; Quan Y; Cheng H; Al-Enizi AM; Gong X; Zheng G
    Anal Chem; 2015 Jul; 87(13):6703-8. PubMed ID: 26069939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducible Plasmonic Nanopyramid Array of Various Metals for Highly Sensitive Refractometric and Surface-Enhanced Raman Biosensing.
    Zhang L; Li X; Wang Y; Sun K; Chen X; Chen H; Zhou J
    ACS Omega; 2018 Oct; 3(10):14181-14187. PubMed ID: 30411061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array.
    Li J; Cushing SK; Zheng P; Meng F; Chu D; Wu N
    Nat Commun; 2013; 4():2651. PubMed ID: 24136178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial confined formation of mesoporous spherical TiO2 nanostructures with improved photoelectric conversion efficiency.
    Shao W; Gu F; Li C; Lu M
    Inorg Chem; 2010 Jun; 49(12):5453-9. PubMed ID: 20507078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched artificial nanofinger arrays by mesoporous interfacial atomic rearrangement.
    Kong B; Tang J; Zhang Y; Selomulya C; Gong X; Liu Y; Zhang W; Yang J; Wang W; Sun X; Wang Y; Zheng G; Zhao D
    J Am Chem Soc; 2015 Apr; 137(12):4260-6. PubMed ID: 25764364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications.
    Kochuveedu ST; Jang YH; Kim DH
    Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and functionalization of photocatalytic systems within mesoporous silica.
    Qian X; Fuku K; Kuwahara Y; Kamegawa T; Mori K; Yamashita H
    ChemSusChem; 2014 Jun; 7(6):1528-36. PubMed ID: 24828540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays.
    Kim HJ; Lee SH; Upadhye AA; Ro I; Tejedor-Tejedor MI; Anderson MA; Kim WB; Huber GW
    ACS Nano; 2014 Oct; 8(10):10756-65. PubMed ID: 25268767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications.
    Wang Z; Cao D; Wen L; Xu R; Obergfell M; Mi Y; Zhan Z; Nasori N; Demsar J; Lei Y
    Nat Commun; 2016 Jan; 7():10348. PubMed ID: 26753764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates.
    Fang Y; Lv Y; Tang J; Wu H; Jia D; Feng D; Kong B; Wang Y; Elzatahry AA; Al-Dahyan D; Zhang Q; Zheng G; Zhao D
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8425-9. PubMed ID: 26088947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic nanocrystal solar cells utilizing strongly confined radiation.
    Kholmicheva N; Moroz P; Rijal U; Bastola E; Uprety P; Liyanage G; Razgoniaev A; Ostrowski AD; Zamkov M
    ACS Nano; 2014 Dec; 8(12):12549-59. PubMed ID: 25403025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement.
    Kirkeminde A; Retsch M; Wang Q; Xu G; Hui R; Wu J; Ren S
    Nanoscale; 2012 Aug; 4(15):4421-5. PubMed ID: 22695531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production.
    Yu X; Prévot MS; Guijarro N; Sivula K
    Nat Commun; 2015 Jul; 6():7596. PubMed ID: 26126745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.
    Zhang XY; Hu A; Zhang T; Lei W; Xue XJ; Zhou Y; Duley WW
    ACS Nano; 2011 Nov; 5(11):9082-92. PubMed ID: 21955107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.