These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24786978)

  • 1. Zitterbewegung of electrons in carbon nanotubes created by laser pulses.
    Rusin TM; Zawadzki W
    J Phys Condens Matter; 2014 May; 26(21):215301. PubMed ID: 24786978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zitterbewegung (trembling motion) of electrons in semiconductors: a review.
    Zawadzki W; Rusin TM
    J Phys Condens Matter; 2011 Apr; 23(14):143201. PubMed ID: 21422506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zitterbewegung of electrons in quantum wells and dots in the presence of an in-plane magnetic field.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2012 May; 24(18):185304. PubMed ID: 22481374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semirelativity in semiconductors: a review.
    Zawadzki W
    J Phys Condens Matter; 2017 Sep; 29(37):373004. PubMed ID: 28608783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark pulse generation in fiber lasers incorporating carbon nanotubes.
    Liu HH; Chow KK
    Opt Express; 2014 Dec; 22(24):29708-13. PubMed ID: 25606901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes.
    Susi T; Kotakoski J; Arenal R; Kurasch S; Jiang H; Skakalova V; Stephan O; Krasheninnikov AV; Kauppinen EI; Kaiser U; Meyer JC
    ACS Nano; 2012 Oct; 6(10):8837-46. PubMed ID: 23009666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties of two-dimensional zigzag and armchair graphyne nanoribbon semiconductor.
    Asadpour M; Jafari M; Asadpour M; Jafari M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():380-4. PubMed ID: 25576934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of a graphene antidot in magnetic fields.
    Park PS; Kim SC; Yang SR
    J Phys Condens Matter; 2010 Sep; 22(37):375302. PubMed ID: 21403191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser ablation process for single-walled carbon nanotube production.
    Arepalli S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):317-25. PubMed ID: 15296222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons.
    Kumar P; Panchakarla LS; Rao CN
    Nanoscale; 2011 May; 3(5):2127-9. PubMed ID: 21445381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin.
    Kang HS
    J Am Chem Soc; 2005 Jul; 127(27):9839-43. PubMed ID: 15998088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of a quasiparticle in the α-T
    Biswas T; Kanti Ghosh T
    J Phys Condens Matter; 2018 Feb; 30(7):075301. PubMed ID: 29355111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Hückel theory for carbon nanotubes: band structure and transport properties.
    Zienert A; Schuster J; Gessner T
    J Phys Chem A; 2013 May; 117(17):3650-4. PubMed ID: 23534403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight-binding model for carbon nanotubes from ab initio calculations.
    Correa JD; da Silva AJ; Pacheco M
    J Phys Condens Matter; 2010 Jul; 22(27):275503. PubMed ID: 21399258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes.
    Wang JT; Li LL; Zhang MY; Liu SL; Jiang LH; Shen Q
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():417-21. PubMed ID: 24268277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process.
    Ayutsede J; Gandhi M; Sukigara S; Ye H; Hsu CM; Gogotsi Y; Ko F
    Biomacromolecules; 2006 Jan; 7(1):208-14. PubMed ID: 16398517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of pollutant aromatics on carbon nanotubes and graphite.
    Ramraj A; Hillier IH
    J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.