These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24787010)

  • 1. Ordered packing of emulsion droplets toward the preparation of adjustable photomasks.
    Kim JH; Choi JH; Sim JY; Jeong WC; Yang SM; Kim SH
    Langmuir; 2014 May; 30(19):5404-11. PubMed ID: 24787010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hands-off preparation of monodisperse emulsion droplets using a poly(dimethylsiloxane) microfluidic chip for droplet digital PCR.
    Tanaka H; Yamamoto S; Nakamura A; Nakashoji Y; Okura N; Nakamoto N; Tsukagoshi K; Hashimoto M
    Anal Chem; 2015 Apr; 87(8):4134-43. PubMed ID: 25822401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled generation of monodisperse discoid droplets using microchannel arrays.
    Kobayashi I; Uemura K; Nakajima M
    Langmuir; 2006 Dec; 22(26):10893-7. PubMed ID: 17154559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic production of size-tunable hexadecane-in-water emulsions: Effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence.
    Abedi S; Suteria NS; Chen CC; Vanapalli SA
    J Colloid Interface Sci; 2019 Jan; 533():59-70. PubMed ID: 30145441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays.
    Fradet E; McDougall C; Abbyad P; Dangla R; McGloin D; Baroud CN
    Lab Chip; 2011 Dec; 11(24):4228-34. PubMed ID: 22045291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels.
    Maenaka H; Yamada M; Yasuda M; Seki M
    Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
    Filatov NA; Evstrapov AA; Bukatin AS
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34198785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the fluid injection configuration on droplet size in a microfluidic T junction.
    Carrier O; Funfschilling D; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013003. PubMed ID: 24580316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor.
    Yasuda M; Goda T; Ogino H; Glomm WR; Takayanagi H
    J Colloid Interface Sci; 2010 Sep; 349(1):392-401. PubMed ID: 20566203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous microfluidic reactors for polymer particles.
    Seo M; Nie Z; Xu S; Mok M; Lewis PC; Graham R; Kumacheva E
    Langmuir; 2005 Dec; 21(25):11614-22. PubMed ID: 16316091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 512-Channel Geometric Droplet-Splitting Microfluidic Device by Injection of Premixed Emulsion for Microsphere Production.
    Kim CM; Choi HJ; Kim GM
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis.
    Fan SK; Hsu YW; Chen CH
    Lab Chip; 2011 Aug; 11(15):2500-8. PubMed ID: 21666906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.