These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24787170)

  • 1. Estimation of the effective phase function of bulk diffusing materials with the inverse adding-doubling method.
    Leyre S; Meuret Y; Durinck G; Hofkens J; Deconinck G; Hanselaer P
    Appl Opt; 2014 Apr; 53(10):2117-25. PubMed ID: 24787170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the bulk scattering parameters of diffusing materials.
    Leyre S; Leloup FB; Audenaert J; Durinck G; Hofkens J; Deconinck G; Hanselaer P
    Appl Opt; 2013 Jun; 52(18):4083-90. PubMed ID: 23842147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.
    Yaroslavsky AN; Yaroslavsky IV; Goldbach T; Schwarzmaier HJ
    J Biomed Opt; 1999 Jan; 4(1):47-53. PubMed ID: 23015169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues.
    Jacques SL; McCormick NJ
    Biomed Opt Express; 2023 Feb; 14(2):751-770. PubMed ID: 36874481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Aernouts B; Van Beers R; Saeys W
    Opt Express; 2015 Oct; 23(21):27880-98. PubMed ID: 26480447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations.
    Toublanc D
    Appl Opt; 1996 Jun; 35(18):3270-4. PubMed ID: 21102712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.
    Hart VP; Doyle TE
    Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase function estimation from a diffuse optical image via deep learning.
    Liang Y; Niu C; Wei C; Ren S; Cong W; Wang G
    Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35255481
    [No Abstract]   [Full Text] [Related]  

  • 12. Successive order, multiple scattering of two-term Henyey-Greenstein phase functions.
    Pfeiffer N; Chapman GH
    Opt Express; 2008 Sep; 16(18):13637-42. PubMed ID: 18772974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.
    Thennadil SN; Chen YC
    Appl Spectrosc; 2017 Feb; 71(2):224-237. PubMed ID: 27572632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ramsauer approach for light scattering on nonabsorbing spherical particles and application to the Henyey-Greenstein phase function.
    Louedec K; Urban M
    Appl Opt; 2012 Nov; 51(32):7842-52. PubMed ID: 23142898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater.
    Haltrin VI
    Appl Opt; 2002 Feb; 41(6):1022-8. PubMed ID: 11900120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Monte Carlo for estimation of scattering and absorption in liquid optical phantoms.
    Karlsson H; Fredriksson I; Larsson M; Strömberg T
    Opt Express; 2012 May; 20(11):12233-46. PubMed ID: 22714213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the reflection function of an optically thick scattering layer for a Henyey-Greenstein phase function.
    Melnikova IN; Dlugach ZM; Nakajima T; Kawamoto K
    Appl Opt; 2000 Aug; 39(24):4195-204. PubMed ID: 18350000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean optics estimation for absorption, backscattering, and phase function parameters.
    Hakim AH; McCormick NJ
    Appl Opt; 2003 Feb; 42(6):931-8. PubMed ID: 12617207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Henyey-Greenstein and Rayleigh phase function.
    Liu Q; Weng F
    Appl Opt; 2006 Oct; 45(28):7475-9. PubMed ID: 16983436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths.
    Fried D; Glena RE; Featherstone JD; Seka W
    Appl Opt; 1995 Mar; 34(7):1278-85. PubMed ID: 21037659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.