These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24787418)

  • 21. Time-varying tool influence function model of bonnet polishing for aspheric surfaces.
    Zhong B; Wang C; Chen X; Wang J
    Appl Opt; 2019 Feb; 58(4):1101-1109. PubMed ID: 30874159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Elementary Approximation of Dwell Time Algorithm for Ultra-Precision Computer-Controlled Optical Surfacing.
    Wang Y; Zhang Y; Kang R; Ji F
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33919287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel orthogonal velocity polishing tool and its material removal characteristics from CVD SiC mirror surfaces.
    Seo H; Han JY; Kim SW; Seong S; Yoon S; Lee K; Hong J; Lee H; Bok M
    Opt Express; 2016 May; 24(11):12349-66. PubMed ID: 27410150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function.
    Hu H; Zhang X; Ford V; Luo X; Qi E; Zeng X; Zhang X
    Opt Express; 2016 Nov; 24(23):26809-26824. PubMed ID: 27857410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-tool multiplexing model of parallel computer controlled optical surfacing.
    Ke X; Wang T; Choi H; Pullen W; Huang L; Idir M; Kim DW
    Opt Lett; 2020 Dec; 45(23):6426-6429. PubMed ID: 33258828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust linear equation dwell time model compatible with large scale discrete surface error matrix.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2015 Apr; 54(10):2747-56. PubMed ID: 25967185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Material removal mode affected by the particle size in fluid jet polishing.
    Peng W; Guan C; Li S
    Appl Opt; 2013 Nov; 52(33):7927-33. PubMed ID: 24513743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the gap slope on the distribution of removal rate in Belt-MRF.
    Wang D; Hu H; Li L; Bai Y; Luo X; Xue D; Zhang X
    Opt Express; 2017 Oct; 25(22):26600-26614. PubMed ID: 29092149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smoothing tool design and performance during subaperture glass polishing.
    Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B
    Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres.
    Suratwala T; Steele R; Feit M; Dylla-Spears R; Desjardin R; Mason D; Wong L; Geraghty P; Miller P; Shen N
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25489745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the tool influence function during sub-aperture belt-on-wheel glass polishing.
    Suratwala T; Ross J; Steele R; Tham G; Wong L; Wolfs F; Defisher S; Bechtold R; Rinkus M; Mah C
    Appl Opt; 2023 Jan; 62(1):91-101. PubMed ID: 36606856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on active lap tool influence function in grinding 1.8 m primary mirror.
    Haitao L; Zhige Z; Fan W; Bin F; Yongjian W
    Appl Opt; 2013 Nov; 52(31):7504-11. PubMed ID: 24216650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic algorithm-powered non-sequential dwell time optimization for large optics fabrication.
    Kang H; Wang T; Choi H; Kim D
    Opt Express; 2022 May; 30(10):16442-16458. PubMed ID: 36221487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of computer controlled polishing.
    Jones RA
    Appl Opt; 1977 Jan; 16(1):218-24. PubMed ID: 20168455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two distinct tumor cell growth-inhibiting factors from a human rhabdomyosarcoma cell line.
    Fryling CM; Iwata KK; Johnson PA; Knott WB; Todaro GJ
    Cancer Res; 1985 Jun; 45(6):2695-9. PubMed ID: 2580626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of fiber-based tools for glass polishing using experimental and computational approaches.
    Shahinian H; Cherukuri H; Mullany B
    Appl Opt; 2016 Jun; 55(16):4307-16. PubMed ID: 27411180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on Material Removal Model by Reciprocating Magnetorheological Polishing.
    Wang R; Xiu S; Sun C; Li S; Kong X
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing.
    Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J
    Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward the complete practicability for the linear-equation dwell time model in subaperture polishing.
    Dong Z; Cheng H
    Appl Opt; 2015 Oct; 54(30):8884-90. PubMed ID: 26560375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding and reducing mid-spatial frequency ripples during hemispherical sub-aperture tool glass polishing.
    Suratwala T; Menapace J; Tham G; Steele R; Wong L; Ray N; Bauman B
    Appl Opt; 2022 Apr; 61(11):3084-3095. PubMed ID: 35471283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.