These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 24787433)

  • 1. Exploiting cancer's antioxidative weakness through p53 with nanotoxicology.
    Setyawati MI; Tay CY; Leong DT
    Nanomedicine (Lond); 2014 Apr; 9(4):369-71. PubMed ID: 24787433
    [No Abstract]   [Full Text] [Related]  

  • 2. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells.
    Lai JM; Chang JT; Wen CL; Hsu SL
    Eur J Pharmacol; 2009 Nov; 623(1-3):1-9. PubMed ID: 19744477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production.
    Ladelfa MF; Toledo MF; Laiseca JE; Monte M
    Antioxid Redox Signal; 2011 Sep; 15(6):1749-61. PubMed ID: 20919943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Cellular Processes Using Engineered Nanoparticles.
    Hossen MN; Murphy B; Garcı A-Hevia L; Bhattacharya R; Mukherjee P
    Bioconjug Chem; 2018 Jun; 29(6):1793-1808. PubMed ID: 29742344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Involvement of p53 in ceramide signaling cascade].
    Nakashima S; Sawada M
    Tanpakushitsu Kakusan Koso; 2002 Mar; 47(4 Suppl):449-54. PubMed ID: 11915341
    [No Abstract]   [Full Text] [Related]  

  • 7. [p53-regulating pathways as targets for personalized cancer therapy].
    Höpker K; Reinhardt HC
    Dtsch Med Wochenschr; 2013 Jan; 138(3):82-6. PubMed ID: 23299342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer: A piece of the p53 puzzle.
    Bieging KT; Attardi LD
    Nature; 2015 Apr; 520(7545):37-8. PubMed ID: 25799989
    [No Abstract]   [Full Text] [Related]  

  • 9. Contribution of the ROS-p53 feedback loop in thuja-induced apoptosis of mammary epithelial carcinoma cells.
    Saha S; Bhattacharjee P; Mukherjee S; Mazumdar M; Chakraborty S; Khurana A; Nayak D; Manchanda R; Chakrabarty R; Das T; Sa G
    Oncol Rep; 2014 Apr; 31(4):1589-98. PubMed ID: 24482097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2-Hydroxyethyl methacrylate-induced apoptosis through the ATM- and p53-dependent intrinsic mitochondrial pathway.
    Schweikl H; Petzel C; Bolay C; Hiller KA; Buchalla W; Krifka S
    Biomaterials; 2014 Mar; 35(9):2890-904. PubMed ID: 24411679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OxLDL induced p53-dependent apoptosis by activating p38MAPK and PKCδ signaling pathways in J774A.1 macrophage cells.
    Giovannini C; Varì R; Scazzocchio B; Sanchez M; Santangelo C; Filesi C; D'Archivio M; Masella R
    J Mol Cell Biol; 2011 Oct; 3(5):316-8. PubMed ID: 21920989
    [No Abstract]   [Full Text] [Related]  

  • 12. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells.
    Wang G; Wang J; Luo J; Wang L; Chen X; Zhang L; Jiang S
    J Biomed Mater Res A; 2013 Nov; 101(11):3076-85. PubMed ID: 23529952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2.
    Li PF; Dietz R; von Harsdorf R
    EMBO J; 1999 Nov; 18(21):6027-36. PubMed ID: 10545114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating the p53 pathway.
    Dey A; Lane DP; Verma CS
    Semin Cancer Biol; 2010 Feb; 20(1):3-9. PubMed ID: 20193765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipase D2 downregulation induces cellular senescence through a reactive oxygen species-p53-p21Cip1/WAF1 pathway.
    Lee YH; Bae YS
    FEBS Lett; 2014 Aug; 588(17):3251-8. PubMed ID: 25064843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dual role of p53: DNA protection and antioxidant.
    Borrás C; Gómez-Cabrera MC; Viña J
    Free Radic Res; 2011 Jun; 45(6):643-52. PubMed ID: 21452930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p53 and ribosome biogenesis stress: the essentials.
    Golomb L; Volarevic S; Oren M
    FEBS Lett; 2014 Aug; 588(16):2571-9. PubMed ID: 24747423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells.
    Nakamura T; Sakamoto K
    Biochem Biophys Res Commun; 2001 Jun; 284(1):203-10. PubMed ID: 11374891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles.
    Ng KW; Khoo SP; Heng BC; Setyawati MI; Tan EC; Zhao X; Xiong S; Fang W; Leong DT; Loo JS
    Biomaterials; 2011 Nov; 32(32):8218-25. PubMed ID: 21807406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicine in the European Commission policy for nanotechnology.
    Gabellieri C; Frima H
    Nanomedicine; 2011 Oct; 7(5):519-20. PubMed ID: 21802394
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.