These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 24787792)

  • 1. Compression of a pyramidal absorber using multiple discrete coordinate transformation.
    Tang W; Yang R; Hao Y
    Opt Express; 2014 Apr; 22(8):9033-47. PubMed ID: 24787792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband extraordinary transmission in a single sub-wavelength aperture.
    Tang W; Hao Y; Medina F
    Opt Express; 2010 Aug; 18(16):16946-54. PubMed ID: 20721084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite.
    Huang Y; Yuan X; Wang C; Chen M; Tang L; Fang D
    Opt Lett; 2018 Jun; 43(12):2764-2767. PubMed ID: 29905683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical lens compression via transformation optics.
    Roberts DA; Kundtz N; Smith DR
    Opt Express; 2009 Sep; 17(19):16535-42. PubMed ID: 19770868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber.
    Fang J; Liu T; Chen Z; Wang Y; Wei W; Yue X; Jiang Z
    Nanoscale; 2016 Apr; 8(16):8899-909. PubMed ID: 27072200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the performance of a method of simultaneous compression and encryption of multiple images and its resistance against various attacks.
    Alfalou A; Brosseau C; Abdallah N; Jridi M
    Opt Express; 2013 Apr; 21(7):8025-43. PubMed ID: 23571893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-difference time-domain and near-field-to-far-field transformation in the spectral domain: application to scattering objects with complex shapes in the vicinity of a semi-infinite dielectric medium.
    Muller J; Parent G; Jeandel G; Lacroix D
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):868-78. PubMed ID: 21532699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical method for designing approximate cloaks with arbitrary shapes.
    Ma H; Qu S; Xu Z; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036608. PubMed ID: 18851181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis and design of a near-infrared broadband absorber based on EC model.
    Zhang Q; Bai L; Bai Z; Hu P; Liu C
    Opt Express; 2015 Apr; 23(7):8910-7. PubMed ID: 25968728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate modeling of dielectric interfaces by the effective permittivities for the fourth-order symplectic finite-difference time-domain method.
    Hirono T; Yoshikuni Y
    Appl Opt; 2007 Mar; 46(9):1514-24. PubMed ID: 17334444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.
    Simicevic N
    Phys Med Biol; 2008 Mar; 53(6):1795-809. PubMed ID: 18367803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D-printed broadband millimeter wave absorber.
    Petroff M; Appel J; Rostem K; Bennett CL; Eimer J; Marriage T; Ramirez J; Wollack EJ
    Rev Sci Instrum; 2019 Feb; 90(2):024701. PubMed ID: 30831757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles.
    Nagel JR; Scarpulla MA
    Opt Express; 2010 Jun; 18 Suppl 2():A139-46. PubMed ID: 20588582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel structure for tunable terahertz absorber based on graphene.
    Xu BZ; Gu CQ; Li Z; Niu ZY
    Opt Express; 2013 Oct; 21(20):23803-11. PubMed ID: 24104291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wideband coherent perfect absorber based on white-light cavity.
    Kotlicki O; Scheuer J
    Opt Lett; 2014 Dec; 39(23):6624-7. PubMed ID: 25490637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical design of reflectionless complex media by finite embedded coordinate transformations.
    Rahm M; Cummer SA; Schurig D; Pendry JB; Smith DR
    Phys Rev Lett; 2008 Feb; 100(6):063903. PubMed ID: 18352474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of interface roughness on the performance of broadband blackbody absorber based on dielectric-metal film multilayers.
    Guo SH; Sushkov AB; Park DH; Drew HD; Kolb PW; Herman WN; Phaneuf RJ
    Opt Express; 2014 Jan; 22(2):1952-62. PubMed ID: 24515204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfect absorber supported by optical Tamm states in plasmonic waveguide.
    Gong Y; Liu X; Lu H; Wang L; Wang G
    Opt Express; 2011 Sep; 19(19):18393-8. PubMed ID: 21935207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subpixel smoothing finite-difference time-domain method for material interface between dielectric and dispersive media.
    Liu J; Brio M; Moloney JV
    Opt Lett; 2012 Nov; 37(22):4802-4. PubMed ID: 23164919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.