These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24787858)

  • 1. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam.
    He F; Zeng B; Chu W; Ni J; Sugioka K; Cheng Y; Durfee CG
    Opt Express; 2014 Apr; 22(8):9734-48. PubMed ID: 24787858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal modification of femtosecond focal spot under tight focusing condition.
    Jeong TM; Weber S; Le Garrec B; Margarone D; Mocek T; Korn G
    Opt Express; 2015 May; 23(9):11641-56. PubMed ID: 25969256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses.
    He F; Xu H; Cheng Y; Ni J; Xiong H; Xu Z; Sugioka K; Midorikawa K
    Opt Lett; 2010 Apr; 35(7):1106-8. PubMed ID: 20364232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interferometric characterization of pulse front tilt of spatiotemporally focused femtosecond laser pulses.
    Wang Z; He F; Ni J; Jing C; Xie H; Zeng B; Chu W; Qiao L; Cheng Y
    Opt Express; 2014 Oct; 22(21):26328-37. PubMed ID: 25401665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acousto-optic modulator system for femtosecond laser pulses.
    Zeng S; Bi K; Xue S; Liu Y; Lv X; Luo Q
    Rev Sci Instrum; 2007 Jan; 78(1):015103. PubMed ID: 17503942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration-corrected three-dimensional non-inertial scanning for femtosecond lasers.
    Wang Y; Li H; Hu Q; Cheng X; Chen R; Lv X; Zeng S
    Opt Express; 2020 Sep; 28(20):29904-29917. PubMed ID: 33114879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focusing a TM(01) beam with a slightly tilted parabolic mirror.
    April A; Bilodeau P; Piché M
    Opt Express; 2011 May; 19(10):9201-12. PubMed ID: 21643174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation with a focused, pulsed optical beam in scattering media: diffraction effects.
    Daria VR; Saloma C; Kawata S
    Appl Opt; 2000 Oct; 39(28):5244-55. PubMed ID: 18354521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure.
    Yu YY; Chang CK; Lai MW; Huang LS; Lee CK
    Appl Opt; 2011 Dec; 50(34):6384-90. PubMed ID: 22192990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond micromachining in transparent bulk materials using an anamorphic lens.
    Desautels GL; Brewer CD; Walker MA; Juhl SB; Finet MA; Powers PE
    Opt Express; 2007 Oct; 15(20):13139-48. PubMed ID: 19550582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous spatial and temporal focusing optical vortex pulses for micromachining through optically transparent materials.
    Tan Y; Ji L; Liu Z; Li D; Hao Z; Ren Y; Zhang H; Cheng Y; Cai Y
    Opt Express; 2022 Nov; 30(24):43566-43578. PubMed ID: 36523052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.
    Li D; Lv X; Bowlan P; Du R; Zeng S; Luo Q
    Opt Express; 2009 Sep; 17(19):17070-81. PubMed ID: 19770925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of femtosecond laser-induced breakdown spectroscopy (fsLIBS) and applications for biological samples.
    Gill RK; Knorr F; Smith ZJ; Kahraman M; Madsen D; Larsen DS; Wachsmann-Hogiu S
    Appl Spectrosc; 2014; 68(9):949-54. PubMed ID: 25226248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-brightness X-ray free-electron laser with an optical undulator by pulse shaping.
    Chang C; Liang J; Hei D; Becker MF; Tang K; Feng Y; Yakimenko V; Pellegrini C; Wu J
    Opt Express; 2013 Dec; 21(26):32013-8. PubMed ID: 24514796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent control of high-order harmonics with chirped femtosecond laser pulses.
    Lee DG; Kim JH; Hong KH; Nam CH
    Phys Rev Lett; 2001 Dec; 87(24):243902. PubMed ID: 11736503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the focused laser spot of the apodized light source.
    Fu YH; Liu WC; Tsai DP
    Scanning; 2004; 26(5 Suppl 1):I52-6. PubMed ID: 15540814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser intensity dependence of femtosecond near-infrared optoinjection.
    Peng C; Palazzo RE; Wilke I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041903. PubMed ID: 17500917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intense femtosecond optical pulse shaping approaches to spatiotemporal control.
    Goswami D
    Front Chem; 2022; 10():1006637. PubMed ID: 36712993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.
    Stachs O; Schumacher S; Hovakimyan M; Fromm M; Heisterkamp A; Lubatschowski H; Guthoff R
    J Cataract Refract Surg; 2009 Nov; 35(11):1979-83. PubMed ID: 19878832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.