These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers. Belardi W; Knight JC Opt Express; 2013 Sep; 21(19):21912-7. PubMed ID: 24104083 [TBL] [Abstract][Full Text] [Related]
10. Design of hollow core step-index antiresonant fiber with stepped refractive indices cladding. Deng B; Sima C; Tan H; Zhang X; Lian Z; Chen G; Yu Q; Xu J; Liu D Front Optoelectron; 2021 Dec; 14(4):407-413. PubMed ID: 36637758 [TBL] [Abstract][Full Text] [Related]
11. Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm. Sampaolo A; Patimisco P; Kriesel JM; Tittel FK; Scamarcio G; Spagnolo V Opt Express; 2015 Jan; 23(1):195-204. PubMed ID: 25835666 [TBL] [Abstract][Full Text] [Related]
12. Low loss hollow-core antiresonant fiber with nested supporting rings. Zhu Y; Song N; Gao F; Xu X Opt Express; 2021 Jan; 29(2):1659-1665. PubMed ID: 33726375 [TBL] [Abstract][Full Text] [Related]
13. Nested capillary anti-resonant silica fiber with mid-infrared transmission and low bending sensitivity at 4000 nm. Klimczak M; Dobrakowski D; Ghosh AN; Stępniewski G; Pysz D; Huss G; Sylvestre T; Buczyński R Opt Lett; 2019 Sep; 44(17):4395-4398. PubMed ID: 31465410 [TBL] [Abstract][Full Text] [Related]
14. Multioctave supercontinuum from visible to mid-infrared and bend effects on ultrafast nonlinear dynamics in gas-filled hollow-core fiber. Habib MS; Markos C; Antonio-Lopez JE; Amezcua-Correa R Appl Opt; 2019 May; 58(13):D7-D11. PubMed ID: 31044814 [TBL] [Abstract][Full Text] [Related]
15. Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR. Wheeler NV; Bradley TD; Hayes JR; Gouveia MA; Liang S; Chen Y; Sandoghchi SR; Abokhamis Mousavi SM; Poletti F; Petrovich MN; Richardson DJ Opt Lett; 2017 Jul; 42(13):2571-2574. PubMed ID: 28957287 [TBL] [Abstract][Full Text] [Related]
16. Bend losses in flexible polyurethane antiresonant terahertz waveguides. Stefani A; Henry Skelton J; Tuniz A Opt Express; 2021 Aug; 29(18):28692-28703. PubMed ID: 34614994 [TBL] [Abstract][Full Text] [Related]
17. Anti-Resonant Hollow Core Fibers with Modified Shape of the Core for the Better Optical Performance in the Visible Spectral Region-A Numerical Study. Stawska HI; Popenda MA; Bereś-Pawlik E Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960824 [TBL] [Abstract][Full Text] [Related]
18. Bending loss characterization in nodeless hollow-core anti-resonant fiber. Gao SF; Wang YY; Liu XL; Ding W; Wang P Opt Express; 2016 Jun; 24(13):14801-11. PubMed ID: 27410632 [TBL] [Abstract][Full Text] [Related]
19. Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet. Hartung A; Kobelke J; Schwuchow A; Wondraczek K; Bierlich J; Popp J; Frosch T; Schmidt MA Opt Express; 2015 Feb; 23(3):2557-65. PubMed ID: 25836120 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Microchannels in a Nodeless Antiresonant Hollow-Core Fiber Using Femtosecond Laser Pulses. Kozioł P; Jaworski P; Krzempek K; Hoppe V; Dudzik G; Yu F; Wu D; Liao M; Knight J; Abramski K Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]