These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24787900)

  • 1. Application of carbon nanocatalysts in upgrading heavy crude oil assisted with microwave heating.
    Li K; Hou B; Wang L; Cui Y
    Nano Lett; 2014 Jun; 14(6):3002-8. PubMed ID: 24787900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the synthesis method of Fe
    Torkaman P; Karimzadeh R; Jafari A
    Sci Rep; 2023 Oct; 13(1):18151. PubMed ID: 37875527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory Experiments on the In Situ Upgrading of Heavy Crude Oil Using Catalytic Aquathermolysis by Acidic Ionic Liquid.
    D Alharthy R; El-Nagar RA; Ghanem A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing the Power of Microwave Irradiation: A Novel Approach to Bitumen Partial Upgrading.
    Abdrabou MK; Han X; Zeng Y; Zheng Y
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ microwave-assisted catalytic upgrading of heavy oil: Experimental validation and effect of catalyst pore structure on activity.
    Adam M; Anbari H; Hart A; Wood J; Robinson JP; Rigby SP
    Chem Eng J; 2021 Jun; 413():127420. PubMed ID: 33106747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Nickel Oxide Catalysts (Bunsenites) for In-Situ Hydrothermal Upgrading Process of Heavy Oil.
    Alonso JPP; Djimasbe R; Zairov R; Yuan C; Al-Muntaser AA; Stepanov A; Nizameeva G; Dovzhenko A; Suwaid MA; Varfolomeev MA; Zinnatullin AL
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavitation induced upgrading of heavy oil and bottom-of-the-barrel: A review.
    Sawarkar AN
    Ultrason Sonochem; 2019 Nov; 58():104690. PubMed ID: 31450381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ upgrading of Egyptian heavy crude oil using matrix polymer carboxyl methyl cellulose/silicate graphene oxide nanocomposites.
    Mostafa EM; Ghanem A; Hosny R; El-Nagar R
    Sci Rep; 2024 Sep; 14(1):20985. PubMed ID: 39251634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.
    Li D; Zhang Y; Quan X; Zhao Y
    J Environ Sci (China); 2009; 21(9):1290-5. PubMed ID: 19999979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal removal and crude bio-oil upgrade from Sedum alfredii Hance harvest using hydrothermal upgrading.
    Yang JG; Tang CB; He J; Yang SH; Tang MT
    J Hazard Mater; 2010 Jul; 179(1-3):1037-41. PubMed ID: 20409636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process.
    Yang JG
    Bioresour Technol; 2010 Oct; 101(19):7653-7. PubMed ID: 20578290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions.
    Shibulal B; Al-Bahry SN; Al-Wahaibi YM; Elshafie AE; Al-Bemani AS; Joshi SJ
    PLoS One; 2017; 12(2):e0171432. PubMed ID: 28196087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process.
    Yang JG
    Bioresour Technol; 2010 Oct; 101(19):7653-7657. PubMed ID: 20576570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Magneto-Heated Ferrimagnetic Sponge for Continuous Recovery of Viscous Crude Oil.
    Song Y; Shi LA; Xing H; Jiang K; Ge J; Dong L; Lu Y; Yu SH
    Adv Mater; 2021 Sep; 33(36):e2100074. PubMed ID: 34297448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills.
    Luo Z; Wang X; Yang D; Zhang S; Zhao T; Qin L; Yu ZZ
    J Colloid Interface Sci; 2020 Jun; 570():61-71. PubMed ID: 32142904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.
    Uçar S; Karagöz S
    Waste Manag Res; 2017 May; 35(5):480-490. PubMed ID: 28097923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upgrading and Refining of Crude Oils and Petroleum Products by Ionizing Irradiation.
    Zaikin YA; Zaikina RF
    Top Curr Chem (Cham); 2016 Jun; 374(3):34. PubMed ID: 27573274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol.
    Peng J; Chen P; Lou H; Zheng X
    Bioresour Technol; 2009 Jul; 100(13):3415-8. PubMed ID: 19269811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the Transportation Limits of Heavy Crude Oil Using Three Combined Methods of Heating, Water Blending, and Dilution.
    Jing J; Yin R; Yuan Y; Shi Y; Sun J; Zhang M
    ACS Omega; 2020 May; 5(17):9870-9884. PubMed ID: 32391474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.