These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24788060)

  • 1. DNA recombination in somatic plant cells: mechanisms and evolutionary consequences.
    Knoll A; Fauser F; Puchta H
    Chromosome Res; 2014 Jun; 22(2):191-201. PubMed ID: 24788060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders.
    Kim J; Huang AY; Johnson SL; Lai J; Isacco L; Jeffries AM; Miller MB; Lodato MA; Walsh CA; Lee EA
    Nat Commun; 2022 Oct; 13(1):5918. PubMed ID: 36207339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability.
    Reitz D; Djeghmoum Y; Watson RA; Rajput P; Argueso JL; Heyer WD; Piazza A
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.
    Fauser F; Schiml S; Puchta H
    Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field.
    Schaeffer SM; Nakata PA
    Plant Sci; 2015 Nov; 240():130-42. PubMed ID: 26475194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.
    Ma X; Zhang Q; Zhu Q; Liu W; Chen Y; Qiu R; Wang B; Yang Z; Li H; Lin Y; Xie Y; Shen R; Chen S; Wang Z; Chen Y; Guo J; Chen L; Zhao X; Dong Z; Liu YG
    Mol Plant; 2015 Aug; 8(8):1274-84. PubMed ID: 25917172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells.
    Salomon S; Puchta H
    EMBO J; 1998 Oct; 17(20):6086-95. PubMed ID: 9774352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.
    Michno JM; Wang X; Liu J; Curtin SJ; Kono TJ; Stupar RM
    GM Crops Food; 2015; 6(4):243-52. PubMed ID: 26479970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation.
    Dubin MJ; Zhang P; Meng D; Remigereau MS; Osborne EJ; Paolo Casale F; Drewe P; Kahles A; Jean G; Vilhjálmsson B; Jagoda J; Irez S; Voronin V; Song Q; Long Q; Rätsch G; Stegle O; Clark RM; Nordborg M
    Elife; 2015 May; 4():e05255. PubMed ID: 25939354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental perception and epigenetic memory: mechanistic insight through FLC.
    Berry S; Dean C
    Plant J; 2015 Jul; 83(1):133-48. PubMed ID: 25929799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles.
    Hyun Y; Kim J; Cho SW; Choi Y; Kim JS; Coupland G
    Planta; 2015 Jan; 241(1):271-84. PubMed ID: 25269397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing in rice and wheat using the CRISPR/Cas system.
    Shan Q; Wang Y; Li J; Gao C
    Nat Protoc; 2014 Oct; 9(10):2395-410. PubMed ID: 25232936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRISPR/Cas9 system for plant genome editing and beyond.
    Bortesi L; Fischer R
    Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9-based genome editing in Arabidopsis and tobacco.
    Li JF; Zhang D; Sheen J
    Methods Enzymol; 2014; 546():459-72. PubMed ID: 25398353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum.
    Gao J; Wang G; Ma S; Xie X; Wu X; Zhang X; Wu Y; Zhao P; Xia Q
    Plant Mol Biol; 2015 Jan; 87(1-2):99-110. PubMed ID: 25344637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases.
    Lor VS; Starker CG; Voytas DF; Weiss D; Olszewski NE
    Plant Physiol; 2014 Nov; 166(3):1288-91. PubMed ID: 25217528
    [No Abstract]   [Full Text] [Related]  

  • 19. Repair Pathway Choices and Consequences at the Double-Strand Break.
    Ceccaldi R; Rondinelli B; D'Andrea AD
    Trends Cell Biol; 2016 Jan; 26(1):52-64. PubMed ID: 26437586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive analysis of the mitochondrial genome of
    Zeng T; Ni Y; Li J; Chen H; Lu Q; Jiang M; Xu L; Liu C; Xiao P
    Front Plant Sci; 2024; 15():1326387. PubMed ID: 38807783
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.