These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 24788074)
1. Characterization of nanoparticle delivery in microcirculation using a microfluidic device. Thomas A; Tan J; Liu Y Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074 [TBL] [Abstract][Full Text] [Related]
2. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function. Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938 [TBL] [Abstract][Full Text] [Related]
3. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Lamberti G; Soroush F; Smith A; Kiani MF; Prabhakarpandian B; Pant K Microvasc Res; 2015 May; 99():19-25. PubMed ID: 25708050 [TBL] [Abstract][Full Text] [Related]
4. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry. Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110 [TBL] [Abstract][Full Text] [Related]
5. Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Lamberti G; Tang Y; Prabhakarpandian B; Wang Y; Pant K; Kiani MF; Wang B Microvasc Res; 2013 Sep; 89():107-14. PubMed ID: 23557880 [TBL] [Abstract][Full Text] [Related]
6. Targeting therapeutics to the vascular wall in atherosclerosis--carrier size matters. Charoenphol P; Mocherla S; Bouis D; Namdee K; Pinsky DJ; Eniola-Adefeso O Atherosclerosis; 2011 Aug; 217(2):364-70. PubMed ID: 21601207 [TBL] [Abstract][Full Text] [Related]
7. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape. D'Apolito R; Tomaiuolo G; Taraballi F; Minardi S; Kirui D; Liu X; Cevenini A; Palomba R; Ferrari M; Salvatore F; Tasciotti E; Guido S J Control Release; 2015 Nov; 217():263-72. PubMed ID: 26381900 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic interactions between red blood cells and drug carriers by image analysis techniques. D'Apolito R; Taraballi F; Minardi S; Liu X; Caserta S; Cevenini A; Tasciotti E; Tomaiuolo G; Guido S Med Eng Phys; 2016 Jan; 38(1):17-23. PubMed ID: 26651215 [TBL] [Abstract][Full Text] [Related]
9. Microfluidics analysis of red blood cell membrane viscoelasticity. Tomaiuolo G; Barra M; Preziosi V; Cassinese A; Rotoli B; Guido S Lab Chip; 2011 Feb; 11(3):449-54. PubMed ID: 21076756 [TBL] [Abstract][Full Text] [Related]
10. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping. Didar TF; Li K; Tabrizian M; Veres T Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083 [TBL] [Abstract][Full Text] [Related]
11. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel. Del Giudice F; Sathish S; D'Avino G; Shen AQ Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161 [TBL] [Abstract][Full Text] [Related]
12. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
13. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. Arabuli KV; Kopoleva E; Akenoun A; Mikhailova LV; Petrova E; Muslimov AR; Senichkina DA; Tsymbal S; Shakirova AI; Ignatiev AI; Lepik KV; Zyuzin MV Biomater Adv; 2024 Jul; 161():213904. PubMed ID: 38805763 [TBL] [Abstract][Full Text] [Related]
14. Particle separation by a moving air-liquid interface in a microchannel. Wang F; Chon CH; Li D J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407 [TBL] [Abstract][Full Text] [Related]
15. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Toy R; Hayden E; Shoup C; Baskaran H; Karathanasis E Nanotechnology; 2011 Mar; 22(11):115101. PubMed ID: 21387846 [TBL] [Abstract][Full Text] [Related]
16. Challenge in particle delivery to cells in a microfluidic device. Moghadas H; Saidi MS; Kashaninejad N; Nguyen NT Drug Deliv Transl Res; 2018 Jun; 8(3):830-842. PubMed ID: 29270808 [TBL] [Abstract][Full Text] [Related]
17. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen. Picot J; Ndour PA; Lefevre SD; El Nemer W; Tawfik H; Galimand J; Da Costa L; Ribeil JA; de Montalembert M; Brousse V; Le Pioufle B; Buffet P; Le Van Kim C; Français O Am J Hematol; 2015 Apr; 90(4):339-45. PubMed ID: 25641515 [TBL] [Abstract][Full Text] [Related]
18. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections. Yang X; Forouzan O; Burns JM; Shevkoplyas SS Lab Chip; 2011 Oct; 11(19):3231-40. PubMed ID: 21847500 [TBL] [Abstract][Full Text] [Related]
19. Automatic particle detection and sorting in an electrokinetic microfluidic chip. Song Y; Peng R; Wang J; Pan X; Sun Y; Li D Electrophoresis; 2013 Mar; 34(5):684-90. PubMed ID: 23172422 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Prabhakarpandian B; Shen MC; Pant K; Kiani MF Microvasc Res; 2011 Nov; 82(3):210-20. PubMed ID: 21763328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]