These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24788141)

  • 1. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.
    Fukushima A; Yagi R; Kawai N; Honda M; Nishina E; Oohashi T
    PLoS One; 2014; 9(4):e95464. PubMed ID: 24788141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inaudible high-frequency sounds affect brain activity: hypersonic effect.
    Oohashi T; Nishina E; Honda M; Yonekura Y; Fuwamoto Y; Kawai N; Maekawa T; Nakamura S; Fukuyama H; Shibasaki H
    J Neurophysiol; 2000 Jun; 83(6):3548-58. PubMed ID: 10848570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of biological system other than auditory air-conduction in the emergence of the hypersonic effect.
    Oohashi T; Kawai N; Nishina E; Honda M; Yagi R; Nakamura S; Morimoto M; Maekawa T; Yonekura Y; Shibasaki H
    Brain Res; 2006 Feb; 1073-1074():339-47. PubMed ID: 16458271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulatory effect of inaudible high-frequency sounds on human acoustic perception.
    Yagi R; Nishina E; Honda M; Oohashi T
    Neurosci Lett; 2003 Nov; 351(3):191-5. PubMed ID: 14623138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution music with inaudible high-frequency components produces a lagged effect on human electroencephalographic activities.
    Kuribayashi R; Yamamoto R; Nittono H
    Neuroreport; 2014 Jun; 25(9):651-5. PubMed ID: 24722228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.
    Kuribayashi R; Nittono H
    Front Psychol; 2017; 8():93. PubMed ID: 28203213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inaudible temporomandibular joint vibrations.
    Widmalm SE; Bae HE; Djurdjanovic D; McKay DC
    Cranio; 2006 Jul; 24(3):207-12. PubMed ID: 16933462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.
    Fedele T; Scheer HJ; Burghoff M; Curio G; Körber R
    Physiol Meas; 2015 Feb; 36(2):357-68. PubMed ID: 25612926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral cues for sound localization in cats: effects of frequency domain on minimum audible angles in the median and horizontal planes.
    Huang AY; May BJ
    J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2341-8. PubMed ID: 8865641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antero-posterior EEG changes during the wakefulness-sleep transition.
    De Gennaro L; Ferrara M; Curcio G; Cristiani R
    Clin Neurophysiol; 2001 Oct; 112(10):1901-11. PubMed ID: 11595150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of low-pass noise masking on auditory event-related potentials to speech.
    Martin BA; Stapells DR
    Ear Hear; 2005 Apr; 26(2):195-213. PubMed ID: 15809545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of decreased audibility produced by high-pass noise masking on cortical event-related potentials to speech sounds/ba/and/da.
    Martin BA; Sigal A; Kurtzberg D; Stapells DR
    J Acoust Soc Am; 1997 Mar; 101(3):1585-99. PubMed ID: 9069627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of the temporal envelope of sounds in the human brain.
    Giraud AL; Lorenzi C; Ashburner J; Wable J; Johnsrude I; Frackowiak R; Kleinschmidt A
    J Neurophysiol; 2000 Sep; 84(3):1588-98. PubMed ID: 10980029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP).
    Manohar S; Spoth J; Radziwon K; Auerbach BD; Salvi R
    Hear Res; 2017 Sep; 353():197-203. PubMed ID: 28705607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of noise and music on EEG power spectrum].
    Yuan Q; Liu XH; Li DC; Wang HL; Liu YS
    Space Med Med Eng (Beijing); 2000 Dec; 13(6):401-4. PubMed ID: 11767781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient noise interferes with auscultatory blood pressure measurement during exercise.
    Lightfoot JT; Tuller B; Williams DF
    Med Sci Sports Exerc; 1996 Apr; 28(4):502-8. PubMed ID: 8778557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands.
    Michels L; Bucher K; Lüchinger R; Klaver P; Martin E; Jeanmonod D; Brandeis D
    PLoS One; 2010 Apr; 5(4):e10298. PubMed ID: 20421978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of low pass filtering on the intelligibility of speech in noise for people with and without dead regions at high frequencies.
    Baer T; Moore BC; Kluk K
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1133-44. PubMed ID: 12243160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.