BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24788192)

  • 21. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous alginate/poly(ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity.
    Grandi C; Di Liddo R; Paganin P; Lora S; Dalzoppo D; Feltrin G; Giraudo C; Tommasini M; Conconi MT; Parnigotto PP
    Int J Mol Med; 2011 Mar; 27(3):455-67. PubMed ID: 21206967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mastoid obliteration and external auditory canal reconstruction using 3D printed bioactive glass S53P4 /polycaprolactone scaffold loaded with bone morphogenetic protein-2: A simulation clinical study in rabbits.
    Yu F; Fan X; Wu H; Ou Y; Zhao X; Chen T; Qian Y; Kang H
    Regen Ther; 2022 Dec; 21():469-476. PubMed ID: 36313396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Obliteration of temporal dorsal bulla in guinea pigs using different types of calcium phosphate.
    Park YH; Kim SG; Lee JW; Yoon YH
    Int J Pediatr Otorhinolaryngol; 2011 Sep; 75(9):1176-80. PubMed ID: 21774997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
    Ba Linh NT; Min YK; Lee BT
    J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tissue engineering of cartilage with porous polycarprolactone--alginate scaffold: the first report of tissue engineering in Thailand.
    Bunaprasert T; Thongmarongsri N; Thanakit V; Ruangvejvorachai P; Buranapraditkul S; Maneesri S; Kanokpanont S
    J Med Assoc Thai; 2006 Sep; 89 Suppl 3():S108-14. PubMed ID: 17718275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of piperacillin-tazobactam coated β-tricalcium phosphate for mastoid obliteration in otitis media.
    Jang CH; Cho YB; Yang HC; Kim JS; Choi CH; Jang SJ; Park H; Kim GH
    Int J Pediatr Otorhinolaryngol; 2011 May; 75(5):631-4. PubMed ID: 21388691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone formation of middle ear cavity using biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 using animal model.
    Kim SE; Yun YP; Song HR; Choi KH; Kim BH; Lee EK; Song JJ
    Int J Pediatr Otorhinolaryngol; 2013 Sep; 77(9):1430-3. PubMed ID: 23830037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.
    Nguyen TH; Bao TQ; Park I; Lee BT
    J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study.
    Baba K; Yamazaki Y; Ishiguro M; Kumazawa K; Aoyagi K; Ikemoto S; Takeda A; Uchinuma E
    J Craniomaxillofac Surg; 2013 Dec; 41(8):775-82. PubMed ID: 23465638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects.
    Yilgor P; Yilmaz G; Onal MB; Solmaz I; Gundogdu S; Keskil S; Sousa RA; Reis RL; Hasirci N; Hasirci V
    J Tissue Eng Regen Med; 2013 Sep; 7(9):687-96. PubMed ID: 22396311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH
    Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro.
    Gauthaman K; Venugopal JR; Yee FC; Biswas A; Ramakrishna S; Bongso A
    Tissue Eng Part A; 2011 Jan; 17(1-2):71-81. PubMed ID: 20673136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration.
    Raucci MG; D'Antò V; Guarino V; Sardella E; Zeppetelli S; Favia P; Ambrosio L
    Acta Biomater; 2010 Oct; 6(10):4090-9. PubMed ID: 20417736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering.
    Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V
    Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.