BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24788236)

  • 1. Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing.
    Wang H; Shi L; Qin J; Yousefi S; Li Y; Wang RK
    Lasers Surg Med; 2014 Aug; 46(6):470-8. PubMed ID: 24788236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis.
    Rege A; Thakor NV; Rhie K; Pathak AP
    Angiogenesis; 2012 Mar; 15(1):87-98. PubMed ID: 22198198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography.
    Yousefi S; Qin J; Dziennis S; Wang RK
    J Biomed Opt; 2014; 19(7):76015. PubMed ID: 25036212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional evaluation of hemodynamic response during neural activation using optical microangiography integrated with dual-wavelength laser speckle imaging.
    Qin J; Shi L; Wang H; Reif R; Wang RK
    J Biomed Opt; 2014 Feb; 19(2):026013. PubMed ID: 24549439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking dynamic microvascular changes during healing after complete biopsy punch on the mouse pinna using optical microangiography.
    Jung Y; Dziennis S; Zhi Z; Reif R; Zheng Y; Wang RK
    PLoS One; 2013; 8(2):e57976. PubMed ID: 23469122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system.
    Qin J; Reif R; Zhi Z; Dziennis S; Wang R
    Biomed Opt Express; 2012 Mar; 3(3):455-66. PubMed ID: 22435094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive imaging of retinal morphology and microvasculature in obese mice using optical coherence tomography and optical microangiography.
    Zhi Z; Chao JR; Wietecha T; Hudkins KL; Alpers CE; Wang RK
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):1024-30. PubMed ID: 24458155
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Qin W; Li Y; Wang J; Qi X; Wang RK
    Adv Wound Care (New Rochelle); 2016 Aug; 5(8):332-337. PubMed ID: 27602252
    [No Abstract]   [Full Text] [Related]  

  • 9. Capillary blood flow imaging within human finger cuticle using optical microangiography.
    Baran U; Shi L; Wang RK
    J Biophotonics; 2015 Jan; 8(1-2):46-51. PubMed ID: 25590582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography.
    Qin J; Jiang J; An L; Gareau D; Wang RK
    Lasers Surg Med; 2011 Feb; 43(2):122-9. PubMed ID: 21384393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiexposure laser speckle contrast imaging of the angiogenic microenvironment.
    Rege A; Murari K; Seifert A; Pathak AP; Thakor NV
    J Biomed Opt; 2011 May; 16(5):056006. PubMed ID: 21639574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Vessel Density Measured Using Dynamic Optical Coherence Tomography is a Tool for Wound Healers.
    Mani R; Holmes J; Rerkasem K; Papanas N
    Int J Low Extrem Wounds; 2023 Jun; 22(2):235-240. PubMed ID: 33960852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility of high-resolution laser speckle contrast imaging to assess cutaneous microcirculation for wound healing monitoring in mice.
    Couturier A; Bouvet R; Cracowski JL; Roustit M
    Microvasc Res; 2022 May; 141():104319. PubMed ID: 35065086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue.
    Choi WJ; Wang H; Wang RK
    J Biomed Opt; 2014 May; 19(5):056003. PubMed ID: 24810259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential use of OCT-based microangiography in clinical dermatology.
    Baran U; Choi WJ; Wang RK
    Skin Res Technol; 2016 May; 22(2):238-246. PubMed ID: 26335451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT.
    Zhi Z; Cepurna W; Johnson E; Jayaram H; Morrison J; Wang RK
    Microvasc Res; 2015 Sep; 101():86-95. PubMed ID: 26186381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice.
    Kofman I; Abookasis D
    J Biomed Opt; 2015 Oct; 20(10):106009. PubMed ID: 26502232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of monocyte subsets in myocutaneous revascularization.
    Khan B; Rangasamy S; McGuire PG; Howdieshell TR
    J Surg Res; 2013 Aug; 183(2):963-75. PubMed ID: 23498341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the microvascular response in the healing wound in the spontaneously hypertensive and non-hypertensive rat.
    Rendell MS; Milliken BK; Finnegan MF; Finney DE; Healy JC; Bonner RF
    Int J Surg Investig; 2000; 2(1):17-25. PubMed ID: 12774334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.