These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24788337)

  • 21. Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2).
    Bunet R; Brock A; Rexer HU; Takano E
    FEMS Microbiol Lett; 2006 Sep; 262(1):57-64. PubMed ID: 16907739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interspecies modulation of bacterial development through iron competition and siderophore piracy.
    Traxler MF; Seyedsayamdost MR; Clardy J; Kolter R
    Mol Microbiol; 2012 Nov; 86(3):628-44. PubMed ID: 22931126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The oligoribonuclease gene in Streptomyces coelicolor is not transcriptionally or translationally coupled to adpA, a key bldA target.
    Sello JK; Buttner MJ
    FEMS Microbiol Lett; 2008 Sep; 286(1):60-5. PubMed ID: 18625025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implication of stringent response in the increase of mutability of the whiG and whiH genes during Streptomyces coelicolor development.
    Genay M; Decaris B; Dary A
    Mutat Res; 2007 Nov; 624(1-2):49-60. PubMed ID: 17532011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor.
    Palazzotto E; Renzone G; Fontana P; Botta L; Scaloni A; Puglia AM; Gallo G
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10177-89. PubMed ID: 26428242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor.
    Pettersson BM; Kirsebom LA
    Mol Microbiol; 2011 Mar; 79(6):1602-14. PubMed ID: 21244529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pleiotropic effect of WD-40 domain containing proteins on cellular differentiation and production of secondary metabolites in Streptomyces coelicolor.
    Ulrych A; Goldová J; Petříček M; Benada O; Kofroňová O; Rampírová P; Petříčková K; Branny P
    Mol Biosyst; 2013 Jun; 9(6):1453-69. PubMed ID: 23529369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initial Metabolic Step of a Novel Ethanolamine Utilization Pathway and Its Regulation in
    Krysenko S; Matthews A; Okoniewski N; Kulik A; Girbas MG; Tsypik O; Meyners CS; Hausch F; Wohlleben W; Bera A
    mBio; 2019 May; 10(3):. PubMed ID: 31113893
    [No Abstract]   [Full Text] [Related]  

  • 29. Phage-mediated cloning of bldA, a region involved in Streptomyces coelicolor morphological development, and its analysis by genetic complementation.
    Piret JM; Chater KF
    J Bacteriol; 1985 Sep; 163(3):965-72. PubMed ID: 2993254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes.
    Tiffert Y; Supra P; Wurm R; Wohlleben W; Wagner R; Reuther J
    Mol Microbiol; 2008 Feb; 67(4):861-80. PubMed ID: 18179599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Network Architecture and Environmental Cues Drive Spatial Organization of Phenotypic Division of Labor in Streptomyces coelicolor.
    Zacharia VM; Ra Y; Sue C; Alcala E; Reaso JN; Ruzin SE; Traxler MF
    mBio; 2021 May; 12(3):. PubMed ID: 34006658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor.
    Merrick MJ
    J Gen Microbiol; 1976 Oct; 96(2):299-315. PubMed ID: 186556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental-stage-specific assembly of ParB complexes in Streptomyces coelicolor hyphae.
    Jakimowicz D; Gust B; Zakrzewska-Czerwinska J; Chater KF
    J Bacteriol; 2005 May; 187(10):3572-80. PubMed ID: 15866947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New loci required for Streptomyces coelicolor morphological and physiological differentiation.
    Champness WC
    J Bacteriol; 1988 Mar; 170(3):1168-74. PubMed ID: 3343216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2).
    Fowler-Goldsworthy K; Gust B; Mouz S; Chandra G; Findlay KC; Chater KF
    Microbiology (Reading); 2011 May; 157(Pt 5):1312-1328. PubMed ID: 21330440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes.
    Kodani S; Lodato MA; Durrant MC; Picart F; Willey JM
    Mol Microbiol; 2005 Dec; 58(5):1368-80. PubMed ID: 16313622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor.
    Kim DW; Chater K; Lee KJ; Hesketh A
    J Bacteriol; 2005 May; 187(9):2957-66. PubMed ID: 15838021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Streptomyces coelicolor A3(2) as a heterologous expression host for the cyanobacterial protein kinase C activator lyngbyatoxin A.
    Jones AC; Ottilie S; Eustáquio AS; Edwards DJ; Gerwick L; Moore BS; Gerwick WH
    FEBS J; 2012 Apr; 279(7):1243-51. PubMed ID: 22314229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitric Oxide Signaling for Aerial Mycelium Formation in Streptomyces coelicolor A3(2) M145.
    Honma S; Ito S; Yajima S; Sasaki Y
    Appl Environ Microbiol; 2022 Dec; 88(23):e0122222. PubMed ID: 36354316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of MtrA Inhibits Cellular Development of
    Zhang P; Wu L; Zhu Y; Liu M; Wang Y; Cao G; Chen XL; Tao M; Pang X
    Front Microbiol; 2017; 8():2013. PubMed ID: 29085353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.